Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Camera Motion Estimation Through Planar Deformation Determination

Published: 01 September 2008 Publication History

Abstract

In this paper, we propose a global method for estimating the motion of a camera which films a static scene. Our approach is direct, fast and robust, and deals with adjacent frames of a sequence. It is based on a quadratic approximation of the deformation between two images, in the case of a scene with constant depth in the camera coordinate system. This condition is very restrictive but we show that, provided translation and depth inverse variations are small enough, the error on optical flow involved by the approximation of depths by a constant is small. In this context, we propose a new model of camera motion which allows to separate the image deformation in a similarity and a "purely" projective application, due to change of optical axis direction. This model leads to a quadratic approximation of image deformation that we estimate with an M-estimator; we can immediately deduce camera motion parameters.

References

[1]
Azarbayejani, A., Pentland, A.P.: Recursive estimation of motion, structure and focal length. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 562-575 (1995).
[2]
Yao, A., Calway, A.: Robust estimation of 3-d camera motion for uncalibrated augmented reality. Dept. of Computer Science, University of Bristol, CSTR-02-001 (2002).
[3]
Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(10), 133-135 (1981).
[4]
Faugeras, O.: Three-Dimensional Computer Vision, a Geometric Viewpoint. MIT Press, Cumberland (1993).
[5]
Faugeras, O.,Maybank, S.: Motion from point matches: multiplicity of solutions. Int. J. Comput. Vis. 4(3), 225-246 (1990).
[6]
Huang, T., Faugeras, O.: Some properties of the Ematrix in two-view motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 11(12), 1310-1312 (1989).
[7]
Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cumberland (2000).
[8]
Bruss, A.R., Horn, B.K.: Passive navigation. Comput. Graph. Image Process. 21, 3-20 (1983).
[9]
Heeger, D., Jepson, A.: Subspace methods for recovering rigid motion I: algorithm and implementation. Int. J. Comput. Vis. 7(2), 95-117 (1992).
[10]
Ma, Y., Koseckà, J., Sastry, S.: Linear differential algorithm for motion recovery: a geometric approach. Int. J. Comput. Vis. 36(1), 71-89 (2000).
[11]
Brooks, M.J., Chojnacki, W., Baumela, L.: Determining the egomotion of an uncalibrated camera from instantaneous optical flow. J. Opt. Soc. Am. A 14(10), 2670-2677 (1997).
[12]
Tomasi, C., Shi, J.: Direction of heading from image deformations. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 422-427 (1993).
[13]
Lawn, J., Cipolla, R.: Robust egomotion estimation from affine motion parallax. In: Proc. 3rd European Conf on Computer Vision, pp. 205-210. Stockholm, Sweden (1994).
[14]
Tian, T.Y., Tomasi, C., Heeger, D.J.: Comparison of approaches to egomotion computation. In: Proc. of Conf. on Computer Vision and Pattern Recognition, pp. 315-320 (1996).
[15]
Irani, M., Rousso, B., Peleg, S.: Recovery of ego-motion using region alignement. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 268-272 (1997).
[16]
Horn, B.K., Weldon, E.J.: Direct methods for recovering motion. Int. J. Comput. Vis. 2, 51-76 (1988).
[17]
Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Proc. of European Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 237-252 (1992).
[18]
Negahdaripour, S., Horn, B.K.P.: Direct passive navigation. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 168-176 (1987).
[19]
Dibos, F., Koepfler, G., Monasse, P.: Image Alignment. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003).
[20]
Odobez, J.M., Bouthemy, P.: Robust Multiresolution Estimation of Parametric Motion Models. J. Vis. Commun. Image Represent. 6(4), 348-365 (1995).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 32, Issue 1
September 2008
93 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 September 2008

Author Tags

  1. Camera motion estimation
  2. Optical flow quadratic approximation
  3. Parameter estimation
  4. Planar application

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media