Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Periodic Plus Smooth Image Decomposition

Published: 01 February 2011 Publication History

Abstract

When the Discrete Fourier Transform of an image is computed, the image is implicitly assumed to be periodic. Since there is no reason for opposite borders to be alike, the "periodic" image generally presents strong discontinuities across the frame border. These edge effects cause several artifacts in the Fourier Transform, in particular a well-known "cross" structure made of high energy coefficients along the axes, which can have strong consequences on image processing or image analysis techniques based on the image spectrum (including interpolation, texture analysis, image quality assessment, etc.). In this paper, we show that an image can be decomposed into a sum of a "periodic component" and a "smooth component", which brings a simple and computationally efficient answer to this problem. We discuss the interest of such a decomposition on several applications.

References

[1]
Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933-952 (1998).
[2]
Barrett, H.H., Denny, J.L., Wagner, R.F., Myers, K.J.: Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J. Opt. Soc. Am. A 12(5), 834-852 (1995).
[3]
Beaudoin, N., Beauchemin, S.: An accurate discrete Fourier transform for image processing. In: Proceedings of International Conference on Pattern Recognition, vol. 3, pp. 935-939 (2002).
[4]
Blanchet, G., Moisan, L., Rougé, B.: Measuring the global phase coherence of an image. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 1176-1179 (2008).
[5]
Blanchet, G., Moisan, L., Rougé, B.: Automatic detection of well sampled images via a new ringing measure. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1030-1033 (2010).
[6]
Briggs, W.L., Henson, V.E.: The DFT: An Owner's Manual for the Discrete Fourier Transform. SIAM, Philadelphia (1995).
[7]
Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297-301 (1965).
[8]
De Castro, E., Morandi, C.: Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Anal. 9(5), 700-703 (1987).
[9]
Desolneux, A., Ladjal, S., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Trans. Image Process. 11(10), 1129-1140 (2002).
[10]
Guichard, F., Malgouyres, F.: Total Variation based interpolation. Proc. Eur. Signal Process. Conf. 3, 1741-1744 (1998).
[11]
Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51-83 (1978).
[12]
He, D., Sun, Q.: A practical print-scan resilient watermarking scheme. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 257-260 (2005).
[13]
Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. 207, 187-217 (1980).
[14]
Hutchison, L.A., Barrett, W.A.: Fourier-Mellin registration of line-delineated tabular document images. Int. J. Doc. Anal. Recognit. 8(2-3), 87-110 (2006).
[15]
Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proc. Int. Conf. Cybernetics and Society, pp. 163-165 (1975).
[16]
Larrey-Ruiz, J., Verdu-Monedero, R., Morales-Sanchez, J.: A Fourier domain framework for variational image registration. J. Math. Imaging Vis. 32(1), 57-72 (2008).
[17]
Leprince, S., Barbot, S., Ayoub, F., Avouac, J.-P.: Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45(6), 1529-1558 (2007).
[18]
Lin, C.-Y., Wu, Min, Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Yui Man: Rotation, scale, and translation resilient watermarking for images. IEEE Trans. Image Process. 10(5), 767-782 (2001).
[19]
Lohmann, A.W., Mendelovic, D., Shabtay, G.: Significance of phase and amplitude in the Fourier domain. J. Opt. Soc. Am. A 14, 2901-2904 (1997).
[20]
Nill, N.B., Bouzas, B.H.: Objective image quality measure derived from digital image power spectra. Opt. Eng. 31(4), 813-825 (1992).
[21]
Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266-1271 (1996).
[22]
Saito, N., Remy, J.-F.: The polyharmonic local sine transform: a new tool for local image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal. 20(1), 41-73 (2006).
[23]
Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37(1), 10-21 (1949).
[24]
Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2. http://live.ece.utexas.edu/research/quality (2005).
[25]
Bugao, Xu.: Identifying fabric structures with fast Fourier transform techniques. Tex. Res. J. 66(8), 496-506 (1996).
[26]
Min, Xu., Varshney, P.K., Ruixin, Niu: A subspace method for Fourier based image registration, Asilomar Conference on Signals, Systems and Computers, pp. 425-429 (2006).
[27]
Yamatani, K., Saito, N.: Improvement of DCT-based compression algorithms using poisson equation. IEEE Trans. Image Process. 15(12), 3672-3689 (2006).
[28]
Zhao, J., Saito, N., Wang, Y.: PHLST5: a practical and improved version of polyharmonic local sine transform. J. Math. Imaging Vis. 30(1), 23-41 (2008).
[29]
Xiao-Qun, Zhang, Froment, J.: Total variation based Fourier reconstruction and regularization for computer tomography. Nucl. Sci. Sympos. Conf. Record 4, 2332-2336 (2005).

Cited By

View all
  • (2019)Image Feature Detection Based on Phase Congruency by Monogenic Filters with New Noise EstimationPattern Recognition and Image Analysis10.1007/978-3-030-31332-6_50(577-588)Online publication date: 1-Jul-2019
  • (2018)Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact RemovalInternational Journal of Reconfigurable Computing10.1155/2018/14031812018Online publication date: 1-Jan-2018
  • (2018)A new image watermarking technique based on periodic plus smooth decomposition (PPSD)Soft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-017-2501-222:7(2369-2379)Online publication date: 1-Apr-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 39, Issue 2
February 2011
106 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 February 2011

Author Tags

  1. Artifact
  2. Discrete Fourier Transform
  3. Edge effect
  4. Image quality assessment
  5. Periodic image
  6. Phase coherence
  7. Ringing
  8. Sinc interpolation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Image Feature Detection Based on Phase Congruency by Monogenic Filters with New Noise EstimationPattern Recognition and Image Analysis10.1007/978-3-030-31332-6_50(577-588)Online publication date: 1-Jul-2019
  • (2018)Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact RemovalInternational Journal of Reconfigurable Computing10.1155/2018/14031812018Online publication date: 1-Jan-2018
  • (2018)A new image watermarking technique based on periodic plus smooth decomposition (PPSD)Soft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-017-2501-222:7(2369-2379)Online publication date: 1-Apr-2018
  • (2017)Reducing the Cost of Removing Border Artefacts in Fourier TransformsProceedings of the 8th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies10.1145/3120895.3120899(1-6)Online publication date: 7-Jun-2017
  • (2017)The Shannon Total VariationJournal of Mathematical Imaging and Vision10.1007/s10851-017-0733-559:2(341-370)Online publication date: 1-Oct-2017
  • (2015)Variational Texture Synthesis with Sparsity and Spectrum ConstraintsJournal of Mathematical Imaging and Vision10.1007/s10851-014-0547-752:1(124-144)Online publication date: 1-May-2015
  • (2012)Gabor noise by exampleACM Transactions on Graphics10.1145/2185520.218556931:4(1-9)Online publication date: 1-Jul-2012

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media