Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Morphological Decomposition and Compression of Binary Images via a Minimum Set Cover Algorithm

Published: 01 January 2019 Publication History

Abstract

In this paper, by a novel morphological decomposition method, we propose an efficient compression approach. Our presented decomposition arises from solving a minimum set cover problem (MSCP) obtained from the image skeleton data. We first use the skeleton pixels to create a collection of blocks which cover the foreground. The given blocks are both overlapped and too many. Hence, in order to find the minimum number of the blocks that cover the foreground, we form an MCSP. To solve this problem, we present a new algorithm of which accuracy is better than those of the known methods in the literatures. Also, its error analysis is studied to obtain an error bound. In the sequel, we present a fast algorithm which include an extra parameter by which the relation between the accuracy and CPU time can be controlled. Finally, several examples are given to confirm the efficiency of our approach.

References

[1]
Quddus, A., Fahmy, M.M.: Binary text image compression using overlapping rectangular partitioning. Pattern Recognit. Lett. 20, 81---88 (1999)
[2]
Zakaria, M.F., Vroomen, L.J., Zsombor-Murray, P., van Kessel, J.M.: Fast algorithm for the computation of moment invariants. Pattern Recognit. 20(6), 639---643 (1987)
[3]
Dai, M., Baylou, P., Najim, M.: An efficient algorithm for computation of shape moments from run-length codes or chain codes. Pattern Recognit. 25(10), 1119---1128 (1992)
[4]
Flusser, J.: Refined moment calculation using image block representation. IEEE Trans. Image Process. 9(11), 1977---1978 (2000)
[5]
Li, B.C.: A new computation of geometric moments. Pattern Recognit. 26(1), 109---113 (1993)
[6]
Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7(11), 1515---1609 (1998)
[7]
Kawaguchi, E., Endo, T.: On a method of binary-picture representation and its application to data compression. IEEE Trans. Pattern Anal. 2(1), 27---35 (1980)
[8]
Sossa-Azuela, J.H., Yáñez-Márquez, C., Dáz de León S, J.L.: Computing geometric moments using morphological erosions. Pattern Recognit. 34(2), 271---276 (2001)
[9]
Suk, T., Flusser, J.: Refined morphological methods of moment computation. In: 20th International Conference on Pattern Recognition ICPR10, IEEE Computer Society, vol. 30, pp. 966---970 (2010)
[10]
Eppstein, D.: aph-theoretic solutions to computational geometry problems. In: 35th International Workshop on Graph-Theoretic Concepts in Computer Science WG09. Lecture Notes in Computer Science, vol. 5911, pp. 1---16. Springer (2009)
[11]
Ferrari, L., Sankar, P.V., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Comput. Vision Graph. Image Process. 28(1), 58---71 (1980)
[12]
Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783---797 (1998)
[13]
Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems. SIAM J. Comput. 15(2), 478---494 (1986)
[14]
Lipski Jr., W., Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional data organization II, Fundamenta Informaticae. Ann. Soc. Math. Pol. 4(2), 254---260 (1979)
[15]
Keil, J.M.: Polygon decomposition. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 491---518. Elsevier, New York (2000)
[16]
Ohtsuki, T.: Minimum dissection of rectilinear regions. Proc. IEEE Int. Conf. Circuits Syst. ISCAS 82, 1210---1213 (1982)
[17]
Suk, T., Höschl IV, C., Flusser, J.: Rectangular decomposition of binary images. In: ACIVS, 14th International Conference, Czech Republic (2012 September).
[18]
Suk, T., Höschl IV, C., Flusser, J.: Decomposition of binary images: a survey and comparison. Pattern Recognit. 45, 4279---4291 (2012)
[19]
Arcelli, C., Di Baja, G.S.: Ridge points in euclidean distance maps. Pattern Recognit. Lett 1, 237---243 (1992)
[20]
Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans. Pattern. Anal. 30(12), 2204---2217 (2008)
[21]
Jalba, A.C., Sobiecki, A., Telea, A.C.: An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans. Pattern. Anal. 38(1), 30---45 (2016)
[22]
Marie, R., Labbani-Igbida, O., Mouaddib, E.M.: The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recognit. 56, 26---39 (2016)
[23]
Presti, L.L., Cascia, M.L.: 3D skeleton-based human action classification: a survey. Pattern Recognit. 53, 130---147 (2016)
[24]
Wu, Q.J., Bourland, J.D.: Three-dimensional skeletonization for computer-assisted treatment planning in radiosurgery. Comput. Med. Imaging Gr. 24(4), 243---251 (2000)
[25]
Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. 34, 344---371 (1986)
[26]
Hirata, T.: A unified linear-time algorithm for computing distance maps. Inform. Process. Lett. 58, 129---133 (1996)
[27]
Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. IEEE Trans. Pattern. Anal. 25(2), 265---270 (2003)
[28]
Hesselink, W.H.: A linear-time algorithm for euclidean feature transform sets. Inform. Process. Lett. 102, 181---186 (2007)
[29]
Maurer Jr., C.R., Raghavan, V., Qi, R.: A Linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. Inf. Process. Med. Imaging 58, 358---364 (2001)
[30]
Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 331---340. Kluwer Academic, Dordrecht (2000)
[31]
Strzodka, R., Telea, A.: Generalized distance transforms and skeletons in graphics hardware. In: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, pp. 221---230 (2004)
[32]
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1991)
[33]
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, Raymond E., Thatcher, James W. (eds.) Complexity of Computer Computations, pp. 85---103. Plenum Press, New York (1972)
[34]
Desai, R., Yang, Q., Wu, Z., Meng, W., Yu, C.: Identifying redundant search engines in a very large scale metasearch engine context. In: ACM WIDM '06, 8th ACM International Workshop on Web Information and Data Management, November 10, pp. 51---58. Arlington, Virginia, USA (2006)
[35]
Yang, Q., MacPeek, J., Nofsinger, A.: Efficient and effective practical algorithms for the set-covering problem. In: Conference on Scientific Computing (CSC08), The 2008 World Congress in Computer Science, Computer Engineering and Applied Computing (WORLDCOMP08), Las Vegas, July 14---17 (2008)
[36]
Yang, Q., Nofsinger, A., McPeek, J., Phinney, J., Knuesel, R.: A complete solution to the set covering problem. In: Proceedings of the International Conference on Scientific Computing (CSC), Las Vegas, NV, USA, 27---30 July, pp. 36---41 (2015)
[37]
Department of Image Processing: Tree leaf database. http://zoi.utia.cas.cz/tree_leaves

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 61, Issue 1
January 2019
171 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 January 2019

Author Tags

  1. 68U10
  2. 94A08
  3. Compression
  4. Decomposition
  5. Minimum set cover algorithm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media