Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment

Published: 01 July 2020 Publication History
  • Get Citation Alerts
  • Abstract

    This paper introduces the unsupervised assignment flow that couples the assignment flow for supervised image labeling (Åström et al. in J Math Imaging Vis 58(2):211–238, 2017) with Riemannian gradient flows for label evolution on feature manifolds. The latter component of the approach encompasses extensions of state-of-the-art clustering approaches to manifold-valued data. Coupling label evolution with the spatially regularized assignment flow induces a sparsifying effect that enables to learn compact label dictionaries in an unsupervised manner. Our approach alleviates the requirement for supervised labeling to have proper labels at hand, because an initial set of labels can evolve and adapt to better values while being assigned to given data. The separation between feature and assignment manifolds enables the flexible application which is demonstrated for three scenarios with manifold-valued features. Experiments demonstrate a beneficial effect in both directions: adaptivity of labels improves image labeling, and steering label evolution by spatially regularized assignments leads to proper labels, because the assignment flow for supervised labeling is exactly used without any approximation for label learning.

    References

    [1]
    Amari SI and Cichocki A Information geometry of divergence functions Bull. Pol. Acad. Sci. Tech. 2010 58 1 183-195
    [2]
    Amari SI and Nagaoka H Methods of Information Geometry 2000 Providence Amer. Math. Soc. and Oxford Univ. Press
    [3]
    Åström F, Petra S, Schmitzer B, and Schnörr CImage labeling by assignmentJ. Math. Imaging Vis.2017582211-238363658706845296
    [4]
    Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. Springer (2017)
    [5]
    Banerjee A, Merugu S, Dhillon IS, and Ghosh JClustering with Bregman divergencesJ. Mach. Learn. Res.200561705-174922498701190.62117
    [6]
    Barndorff-Nielsen OE Information and Exponential Families in Statistical Theory 1978 Chichester Wiley
    [7]
    Basseville MDivergence measures for statistical data processing—an annotated bibliographySignal Proc.2013934621-6331028051
    [8]
    Batagelj, V.: Generalized ward and related clustering problems. In: Classification and Related Methods of Data Analysis, pp. 67–74 (1988)
    [9]
    Bauschke HH and Borwein JMLegendre functions and the method of random Bregman projectionsJ. Convex Anal.19974127-6714598810894.49019
    [10]
    Bergmann R, Fitschen JH, Persch J, and Steidl GIterative multiplicative filters for data labelingInt. J. Comput. Vis.20171233435-4533660337
    [11]
    Bhatia R Positive Definite Matrices 2006 Princeton Princeton Univ. Press
    [12]
    Bonnans JF and Shapiro A Perturbation Analysis of Optimization Problems 2013 New York Springer
    [13]
    Censor YA and Zenios SA Parallel Optimization: Theory, Algorithms, and Applications 1997 New York Oxford Univ. Press
    [14]
    Cherian A and Sra S Minh H and Murino V Positive definite matrices: data representation and applications to computer vision Algorithmic Advances in Riemannian Geometry and Applications 2016 Cham Springer 93-114
    [15]
    Cherian A, Sra S, Banerjee A, and Papanikolopoulos N Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices IEEE PAMI 2013 35 9 2161-2174
    [16]
    Comaniciu D and Meer P Mean shift: a robust approach toward feature space analysis IEEE Trans. Pattern Anal. Mach. Intell. 2002 24 5 603-619
    [17]
    Fukunaga K and Hostetler LThe estimation of the gradient of a density function, with applications in pattern recognitionIEEE Trans. Inform. Theory197521132-403886380297.62025
    [18]
    Har-Peled S Geometric Approximation Algorithms 2011 Providence AMS
    [19]
    Harandi M, Hartley R, Lovell B, and Sanderson C Sparse coding on symmetric positive definite manifolds using Bregman divergences IEEE Trans. Neural Netw. Learn. Syst. 2016 27 6 1294-1306
    [20]
    Higham N Functions of Matrices: Theory and Computation 2008 Philadelphia SIAM
    [21]
    Hofmann T, Schölkopf B, and Smola AJKernel methods in machine learningAnn. Stat.20083631171-122024186541151.30007
    [22]
    Hühnerbein, R., Savarino, F., Petra, S., Schnörr, C.: Learning adaptive regularization for image labeling using geometric assignment. In: Proc. SSVM. Springer (2019)
    [23]
    Jost J Riemannian Geometry and Geometric Analysis 2017 7 Berlin Heidelberg Springer-Verlag
    [24]
    Kappes J, Andres B, Hamprecht F, Schnörr C, Nowozin S, Batra D, Kim S, Kausler B, Kröger T, Lellmann J, Komodakis N, Savchynskyy B, and Rother CA comparative study of modern inference techniques for structured discrete energy minimization problemsInt. J. Comput. Vis.20151152155-1843403616
    [25]
    Karcher HRiemannian center of mass and mollifier smoothingCommun. Pure Appl. Math.197730509-5414429750354.57005
    [26]
    Kleefeld, A., Meyer-Baese, A., Burgeth, B.: Elementary morphology for SO(2)-and SO(3)-orientation fields. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 458–469. Springer (2015)
    [27]
    Lee JM Introduction to Smooth Manifolds 2013 New York Springer
    [28]
    McLachlan G and Peel D Finite Mixture Models 2000 New York Wiley
    [29]
    Müllner, D.: Modern Hierarchical, Agglomerative Clustering Algorithms. arXiv preprint arXiv:1109.2378 (2011)
    [30]
    Rockafellar RT and Wets RJB Variational Analysis 2009 3 New York Springer
    [31]
    Schnörr, C.: Assignment flows. In: P. Grohs, M. Holler, A. Weinmann (eds.) Variational Methods for Nonlinear Geometric Data and Applications. Springer (in press) (2019)
    [32]
    Sra, S.: Positive Definite Matrices and the Symmetric Stein Divergence. CoRR arXiv:1110.1773 (2013)
    [33]
    Subbarao R and Meer P Nonlinear mean shift over Riemannian manifolds Int. J. Comput. Vis. 2009 84 1 1-20
    [34]
    Teboulle MA unified continuous optimization framework for center-based clustering methodsJ. Mach. Learn. Res.2007865-10222802151222.68318
    [35]
    Turaga P and Srivastava A Riemannian Computing in Computer Vision 2016 New York Springer
    [36]
    Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Proc. ECCV, pp. 589–600. Springer (2006)
    [37]
    Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric Numerical Integration of the Assignment Flow. Inverse Probl. (2019). 10.1088/1361-6420/ab2772
    [38]
    Zern, A., Zisler, M., Åström, F., Petra, S., Schnörr, C.: Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. In: Proc. GCPR (2018)

    Cited By

    View all
    • (2021)Assignment Flow for Order-Constrained OCT SegmentationInternational Journal of Computer Vision10.1007/s11263-021-01520-5129:11(3088-3118)Online publication date: 1-Nov-2021

    Index Terms

    1. Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Mathematical Imaging and Vision
          Journal of Mathematical Imaging and Vision  Volume 62, Issue 6-7
          Jul 2020
          277 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 01 July 2020
          Accepted: 03 December 2019
          Received: 24 April 2019

          Author Tags

          1. Assignment flow
          2. Divergence function
          3. Feature manifolds
          4. Unsupervised learning
          5. Information geometry

          Qualifiers

          • Research-article

          Funding Sources

          • Deutsche Forschungsgemeinschaft

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 12 Aug 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2021)Assignment Flow for Order-Constrained OCT SegmentationInternational Journal of Computer Vision10.1007/s11263-021-01520-5129:11(3088-3118)Online publication date: 1-Nov-2021

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media