Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The (vertex-)monochromatic index of a graph

Published: 01 May 2017 Publication History

Abstract

A tree T in an edge-colored (vertex-colored) graph H is called a monochromatic (vertex-monochromatic) tree if all the edges (internal vertices) of T have the same color. For $$S\subseteq V(H)$$S⊆V(H), a monochromatic (vertex-monochromatic) S-tree in H is a monochromatic (vertex-monochromatic) tree of H containing the vertices of S. For a connected graph G and a given integer k with $$2\le k\le |V(G)|$$2≤k≤|V(G)|, the k-monochromatic index$$mx_k(G)$$mxk(G) (k-monochromatic vertex-index$$mvx_k(G)$$mvxk(G)) of G is the maximum number of colors needed such that for each subset $$S\subseteq V(G)$$S⊆V(G) of k vertices, there exists a monochromatic (vertex-monochromatic) S-tree. For $$k=2$$k=2, Caro and Yuster showed that $$mc(G)=mx_2(G)=|E(G)|-|V(G)|+2$$mc(G)=mx2(G)=|E(G)|-|V(G)|+2 for many graphs, but it is not true in general. In this paper, we show that for $$k\ge 3$$kź3, $$mx_k(G)=|E(G)|-|V(G)|+2$$mxk(G)=|E(G)|-|V(G)|+2 holds for any connected graph G, completely determining the value. However, for the vertex-version $$mvx_k(G)$$mvxk(G) things will change tremendously. We show that for a given connected graph G, and a positive integer L with $$L\le |V(G)|$$L≤|V(G)|, to decide whether $$mvx_k(G)\ge L$$mvxk(G)źL is NP-complete for each integer k such that $$2\le k\le |V(G)|$$2≤k≤|V(G)|. Finally, we obtain some Nordhaus---Gaddum-type results for the k-monochromatic vertex-index.

References

[1]
Bondy JA, Murty USR (1976) Graph theory with applications. The Macmillan Press, London.
[2]
Cai Q, Li X, Wu D (2015a) Erdös-Gallai-type results for colorful monochromatic connectivity of a graph. J Comb Optim. in press.
[3]
Cai Q, Li X, Wu D (2015b) Some extremal results on the colorful monochromatic vertex-connectivity of a graph. arXiv:1503.08941.
[4]
Caro Y, Lev A, Roditty Y, Tuza Z, Yuster R (2008) On rainbow connection. Electron J Combin 15(1):R57.
[5]
Caro Y, Yuster R (2011) Colorful monochromatic connectivity. Discrete Math 311:1786-1792.
[6]
Chartrand G, Johns G, McKeon K, Zhang P (2008) Rainbow connection in graphs. Math Bohem 133:85-98.
[7]
Chen L, Li X, Lian H (2013) Nordhaus-Gaddum-type theorem for rainbow connection number of graphs. Graphs Combin 29:1235-1247.
[8]
Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York.
[9]
Harary F, Haynes TW (1996) Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math 155:99-105.
[10]
Krivelevich M, Yuster R (2010) The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J Graph Theory 63(3):185-191.
[11]
Laskar R, Peters K (1985) Vertex and edge domination parameters in graphs. Congr Numer 48:291-305.
[12]
Li X, Shi Y, Sun Y (2013) Rainbow connections of graphs: a survey. Graphs Combin 29:1-38.
[13]
Li X, Sun Y (2012) Rainbow connections of graphs. Springer briefs in math. Springer, New York.
[14]
Nordhaus EA, Gaddum JW (1956) On complementary graphs. Am Math Monthly 63:175-177.
[15]
Zhang L, Wu B (2005) The Nordhaus-Gaddum-type inequalities of some chemical indices. MATCH Commun Math Comput Chem 54:189-194.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Combinatorial Optimization
Journal of Combinatorial Optimization  Volume 33, Issue 4
May 2017
347 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 May 2017

Author Tags

  1. 05C15
  2. 05C40
  3. 68Q17
  4. 68Q25
  5. 68R10
  6. NP-complete
  7. Nordhaus---Gaddum-type result
  8. k-Monochromatic index
  9. k-Monochromatic vertex-index

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media