Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Convergence analysis of inexact proximal point algorithms on Hadamard manifolds

Published: 01 March 2015 Publication History

Abstract

Inexact proximal point methods are extended to find singular points for multivalued vector fields on Hadamard manifolds. Convergence criteria are established under some mild conditions. In particular, in the case of proximal point algorithm, that is, $$\varepsilon _n=0$$ n = 0 for each $$n$$ n , our results improve sharply the corresponding results in Li et al. ( 2009 ). Applications to optimization problems, variational inequality problems and gradient methods are also given.

References

[1]
Adler, R., Dedieu, J.P., Margulies, J., Martens, M., Shub, M.: Newton's method on Riemannian manifolds and a geometric model for human spine. IMA J. Numer. Anal. 22, 359---390 (2002)
[2]
Auslender, A.: Problèmes de Minimax via l'Analyse Convexe et les Inequalities Variationelles: Theories et algorithmes, Lectures Notes in Eco. and Math. Systems, 77, Springer Verlag (1972)
[3]
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Prog. Ser. B 116, 5---16 (2009)
[4]
Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton---Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304---361 (2005)
[5]
Bauschke, H.H., Combettes, P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Am. Math. Soc. 131, 3757---3766 (2003)
[6]
Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality problem. Comput. Appl. Math. 28, 15---36 (2009)
[7]
Browder, F.E.: Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118, 338---351 (1965)
[8]
Dedieu, J.P., Priouret, P., Malajovich, G.: Newton's method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395---419 (2003)
[9]
Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69---79 (2000)
[10]
Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: A proximal regularization of the steepest descent method in Riemannian manifold. Balkan J. Geom. Appl. 4(2), 1---8 (1999)
[11]
Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta. Math. Hungarica 94(4), 307---320 (2002)
[12]
DoCarmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)
[13]
Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133---151 (2005)
[14]
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257---270 (2002)
[15]
Ferreira, O.P., Svaiter, B.F.: Kantorovich's theorem on Newton's method in Riemannian manifolds. J. Complex. 18, 304---329 (2002)
[16]
Greene, R., Wu, H.: On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22(7), 641---653 (1973)
[17]
Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649---664 (1992)
[18]
Helmke, U., Huper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dexterous hand grasping. IEEE Trans. Robot. Automat. 18(2), 138---146 (2002)
[19]
Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer-Verlag, New York (1994)
[20]
Krasnoselskii, M.A.: Two observations about the method of successive approximations. Uspehi Mat. Nauk 10, 123---127 (1955)
[21]
Kryanev, A.V.: The solution of incorrectly posed problems by methods of successive approximations. Soviet Math. 14, 673---676 (1973)
[22]
Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687---3732 (2007)
[23]
Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) New Methods of Optimization and Their Industrial Use. International Series of Numerical Mathematics 87, pp. 73---87. Birkhauser, Basel (1989)
[24]
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663---683 (2009)
[25]
Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523---1560 (2011)
[26]
Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486---2514 (2012)
[27]
Li, C., Wang, J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A. 48, 1465---1478 (2005)
[28]
Li, C., Wang, J.H.: Newton's method on Riemannian manifolds: smale's point estimate theory under the $$\gamma $$¿-condition. IMA J. Numer. Anal. 26, 228---251 (2006)
[29]
Li, C., Wang, J.H.: Newton's method for sections on Riemannian manifolds: generalized covariant $$\alpha $$¿-theory. J. Complex. 24, 423---451 (2008)
[30]
Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlin. Anal. 71(11), 5695---5706 (2009)
[31]
Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277---293 (1984)
[32]
Lippert, R., Edelman, A.: Nonlinear eigenvalue problems with orthogonality constraints (Section 9.4). In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems, pp. 290---314. SIAM, Philadelphia (2000)
[33]
Ma, Y., Kosecka, J., Sastry, S.S.: Optimization criteria and geometric algorithms for motion and structure estimation. Internat. J. Comput. Vis. 44, 219---249 (2001)
[34]
Martinet, B.: Régularisation, d'inéquations variationelles par approximations successives, Revue Française d'Informatique et de Recherche Operationelle, pp. 154---159 (1970)
[35]
Minty, G.J.: On the monotonicity of the gradient of a convex function. Pacific J. Math. 14, 243---247 (1964)
[36]
Németh, S.Z.: Monotone vector fields. Publicationes Mathematicae Debrecen 54(3---4), 437---449 (1999)
[37]
Németh, S.Z.: Variational inqualities on Hadamard manifolds. Nonlin. Anal. 52, 1491---1498 (2003)
[38]
Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106---135 (2005)
[39]
Passty, G.B.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274---276 (1979)
[40]
Petersen, P.: Riemannian Geometry, GTM 171, 2nd edn. Springer, Berlin (2006)
[41]
Polyak, B.T.: Introduction to Optimization. Optimization sofware Inc, New York (1987)
[42]
Rapcsák, T.: Smooth Nonlinear Optimization in $$\mathbb{R}^n$$Rn, Nonconvex Optimization and Applications, 19. Kluwer Academic Publisher, Dordrecht (1997)
[43]
Reich, S.: Constructive techniques for accretive and monotone operators. In: Lakshmikantham, V. (ed.) Applied Nonlinear Analysis, pp. 335---345. Academic Press, New York (1979)
[44]
Robinson, S.M.: Stability theory for systems of inequalities, part I: linear systems. SIAM J. Numer. Anal. 12, 754---769 (1975)
[45]
Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75---88 (1970)
[46]
Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems, Nonlinear Functional Analysis, Part 1, F.E. Browder ed., Symp. in Pure Math., Amer. Math. Soc. Prov., R.I. 18, 397---407 (1970)
[47]
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
[48]
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877---898 (1976)
[49]
Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs 149. American Mathematical Society, Providence (1996)
[50]
Singer, I.: The Theory of Best Approximation and Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, 13. SIAM, Philadelphia, (1974)
[51]
Smith, S.T.: Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Trans. Signal Process. 53, 1610---1630 (2005)
[52]
Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Fields Institute Communications, vol. 3, pp. 113---146. American Mathematical Society, Providence, RI (1994)
[53]
Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Prog. 87, 189---202 (2000)
[54]
Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)
[55]
Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the $$\gamma $$¿-condition. J. Complex. 22, 533---548 (2006)
[56]
Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and Accretive operators on Riemannian manifolds. J. Optim. Theory Appl. 146, 691---708 (2010)
[57]
Xavier, J., Barroso, V.: Intrinsic variance lower bound (IVLB): An extension of the Cramér-Rao bound to Riemannian manifolds. In: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005). Philadelphia, PA (2005)
[58]
Yan, W.Y., Lam, J.: An approximate approach to H2 optimal model reduction. IEEE Trans. Automat. Control. 44(7), 1341---1358 (1999)
[59]
Zeidler, E.: Nonlinear Functional Analysis and Applications II B, Nonlinear Monotone Operators. Springer, Berlin (1990)

Cited By

View all
  • (2024)Modified proximal point algorithms for variational inclusion problems on Hadamard manifoldsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-09562-228:9-10(6595-6606)Online publication date: 1-May-2024
  • (2022)A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifoldsNumerical Algorithms10.1007/s11075-022-01464-y93:3(1209-1223)Online publication date: 2-Dec-2022
  • (2021)A Riemannian derivative-free Polak–Ribiére–Polyak method for tangent vector fieldNumerical Algorithms10.1007/s11075-020-00891-z86:1(325-355)Online publication date: 1-Jan-2021
  • Show More Cited By
  1. Convergence analysis of inexact proximal point algorithms on Hadamard manifolds

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of Global Optimization
      Journal of Global Optimization  Volume 61, Issue 3
      March 2015
      205 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 March 2015

      Author Tags

      1. Convergence analysis
      2. Hadamard manifolds
      3. Inexact proximal point algorithms
      4. Monotone vector fields
      5. Primary 49J40
      6. Secondary 58D17

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Modified proximal point algorithms for variational inclusion problems on Hadamard manifoldsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-09562-228:9-10(6595-6606)Online publication date: 1-May-2024
      • (2022)A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifoldsNumerical Algorithms10.1007/s11075-022-01464-y93:3(1209-1223)Online publication date: 2-Dec-2022
      • (2021)A Riemannian derivative-free Polak–Ribiére–Polyak method for tangent vector fieldNumerical Algorithms10.1007/s11075-020-00891-z86:1(325-355)Online publication date: 1-Jan-2021
      • (2016)Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard ManifoldsJournal of Optimization Theory and Applications10.1007/s10957-016-0982-2170:3(916-931)Online publication date: 1-Sep-2016

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media