Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Error Estimates for Finite Element Approximation of Dirichlet Boundary Control for Stokes Equations in L2(Γ)

Published: 01 May 2022 Publication History

Abstract

In this paper we study the finite element approximation of Dirichlet boundary control for Stokes equations in the control space L2(Γ). The governing state equation is understood in the very weak sense which ensures the well-posedness of the optimization problem. We consider the boundary control problems posed on either convex polygonal domains or smooth domains, and derive the respective regularity results for the solutions. A priori error estimates for the Taylor–Hood finite element approximation to the optimization problem are derived for the control variable for both classes of computational domains, where the smooth domain is approximated by a polygonal one. We obtain nearly half an order convergence for the control on convex polygonal domains that reflects the global regularity of the control, while in smooth domains we obtain first order convergence that is dominated by the geometric approximation error of the outward normal vector. Numerical experiments are presented to validate the theoretical results.

References

[1]
Apel T, Mateos M, Pfefferer J, and Rösch A Error estimates for Dirichlet control problems in polygonal domains: quasi-uniform meshes Math. Control Relat. Fields 2018 8 217-245
[2]
Bänsch E and Deckelnick K Optimal error estimates for the Stokes and Navier–Stokes equations with slip-boundary condition ESAIM Math. Model. Numer. Anal. 1999 33 5 923-938
[3]
Bernardi C Optimal finite-element interpolation on curved domains SIAM J. Numer. Anal. 1989 26 5 1212-1240
[4]
Bramble JH and King T A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries Math. Comput. 1994 63 1-17
[5]
Brezzi F and Fortin M Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 1991 New York Springer
[6]
Casas E, Mateos M, and Raymond JP Penalization of Dirichlet optimal control problems ESAIM Control Optim. Calc. Var. 2009 15 4 782-809
[7]
Casas E and Raymond JP The stability in Ws,q(Γ) spaces of L2-projections on some convex sets Numer. Funct. Anal. Optim. 2006 27 117-137
[8]
Casas E and Raymond JP Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations SIAM J. Control. Optim. 2006 45 1586-1611
[9]
Casas E and Sokolowski J Approximation of boundary control problems on curved domains SIAM J. Control. Optim. 2010 48 3746-3780
[10]
Chowdhury S, Gudi T, and Nandakumaran AK Error bounds for a Dirichlet boundary control problem based on energy spaces Math. Comput. 2017 86 305 1103-1126
[11]
Conca, C.: Étude d’un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl. (9) 66(1), 45–70 (1987)
[12]
Dauge M Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations SIAM J. Math. Anal. 1989 20 1 74-97
[13]
de los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal. 62(7), 1289–1316 (2005)
[14]
Deckelnick K, Günther A, and Hinze M Finite element approximation of Dirichlet boundary control for elliptic PDEs on two and three-dimensional curved domains SIAM J. Control. Optim. 2009 48 2798-2819
[15]
Farwig R, Galdi GP, and Sohr H Very weak solutions and large uniqueness classes of stationary Navier–Stokes equations in bounded domains of R2 J. Differ. Equ. 2006 227 2 564-580
[16]
French DA and King JT Approximation of an elliptic control problem by the finite element method Numer. Funct. Anal. Optim. 1991 12 299-314
[17]
Fursikov A, Gunzburger M, and Hou L Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case SIAM J. Control. Optim. 1998 36 852-894
[18]
Fursikov A, Gunzburger M, and Hou L Optimal boundary control for the evolutionary Navier–Stokes system: the three-dimensional case SIAM J. Control Optim. 2005 43 6 2191-2232
[19]
Galdi GP An Introduction to the Mathematical Theory of the Navier–Stokes Equations 1994 Berlin Springer
[20]
Girault V and Raviart PA Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms 1986 Berlin Springer
[21]
Gong W, Hinze M, and Zhou ZJ Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs J. Sci. Comput. 2016 66 3 941-967
[22]
Gong W and Li BY Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems IMA J. Numer. Anal. 2020 40 4 2898-2939
[23]
Gong W, Hu WW, Mateos M, Singler J, and Zhang YW Analysis of an hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system ESAIM Math. Model. Numer. Anal. 2020 54 6 2229-2264
[24]
Gong W, Liu WB, Tan ZY, and Yan NN A convergent adaptive finite element method for elliptic Dirichlet boundary control problem IMA J. Numer. Anal. 2019 39 4 1985-2015
[25]
Gong W, Mateos M, Singler J, and Zhang YW Analysis and approximations of Dirichlet boundary control of Stokes flows in the energy space SIAM J. Numer. Anal. 2022 60 1 450-474
[26]
Gong W and Yan NN Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs SIAM J. Control. Optim. 2011 49 984-1014
[27]
Grisvard P Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 1985 Boston Pitman (Advanced Publishing Program)
[28]
Gunzburger M, Hou L, and Svobodny T Analysis and finite element approximation of optimal control problems for the stationary Navier–Stokes equations with Dirichlet controls RAIRO Modél. Math. Anal. Numér. 1991 25 711-748
[29]
Gunzburger M, Hou L, and Svobodny T Boundary velocity control of incompressible flow with an application to viscous drag reduction SIAM J. Control. Optim. 1992 30 167-181
[30]
Hinze M A variational discretization concept in control constrained optimization: the linear-quadratic case Comput. Optim. Appl. 2005 30 45-61
[31]
Hinze M, Pinnau R, Ulbrich M, and Ulbrich S Optimization with PDE Constraints MMTA 23 2009 Berlin Springer
[32]
Hou LS and Ravindran SS A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier–Stokes equations SIAM J. Control Optim. 1998 36 5 1795-1814
[33]
Hou LS and Ravindran SS Numerical approximation of optimal flow control problems by a penalty method: error estimates and numerical results SIAM J. Sci. Comput. 1999 20 5 1753-1777
[34]
John C and Wachsmuth D Optimal Dirichlet boundary control of stationary Navier–Stokes equations with state constraint Numer. Funct. Anal. Optim. 2009 30 11–12 1309-1338
[35]
Kashiwabara T, Oikawa I, and Zhou G Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition Numer. Math. 2016 4 134 705-740
[36]
Kellogg RB and Osborn JE A regularity result for the Stokes problem in a convex polygon J. Funct. Anal. 1976 21 397-431
[37]
Knobloch P Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions East West J. Numer. Math. 1999 7 133-158
[38]
Lions JL Optimal Control of Systems Governed by Partial Differential Equations 1971 Berlin Springer
[39]
Medková D The Neumann problem for the planar Stokes system Ann. Univ. Ferrara Sez. VII Sci. Mat. 2012 58 2 307-329
[40]
Mateos M Optimization methods for Dirichlet control problems Optimization 2018 67 5 585-617
[41]
May S, Rannacher R, and Vexler B Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems SIAM J. Control. Optim. 2013 51 2585-2611
[42]
Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford (2003)
[43]
Moussaoui M and Zine AM Existence and regularity results for the Stokes system with non-smooth boundary data in a polygon Math. Models Methods Appl. Sci. 1998 8 8 1307-1315
[44]
Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. Multiscale, nonlinear and adaptive approximation, 409-542, Springer, Berlin, (2009)
[45]
Of G, Phan TX, and Steinbach O An energy space finite element approach for elliptic Dirichlet boundary control problems Numer. Math. 2015 129 723-748
[46]
Paloka EM Solvability of the Navier–Stokes system with L2 boundary data Appl. Math. Optim. 2000 41 3 365-375
[47]
Ravindran SS Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations, ESAIM: Math Model. Numer. Anal. 2017 51 3 825-849
[48]
Raymond JP Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions Ann. Inst. H. Poincaré Anal. Non Linéaire 2007 24 6 921-951
[49]
Scott RL and Zhang S Finite element interpolation of nonsmooth functions satisfying boundary conditions Math. Comput. 1990 54 483-493
[50]
Tröltzsch F Optimal Control of Partial Differential Equations: Theory, Methods and Applications 2010 Providence AMS
[51]
Verfürth R Finite element approximation of steady Navier–Stokes equations with mixed boundary conditions RAIRO Modél. Math. Anal. Numér. 1985 19 461-475
[52]
Winkler M Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization Numer. Math. 2020 144 413-445

Index Terms

  1. Error Estimates for Finite Element Approximation of Dirichlet Boundary Control for Stokes Equations in L2(Γ)
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Scientific Computing
          Journal of Scientific Computing  Volume 91, Issue 2
          May 2022
          1057 pages

          Publisher

          Plenum Press

          United States

          Publication History

          Published: 01 May 2022
          Accepted: 06 March 2022
          Revision received: 27 February 2022
          Received: 09 November 2021

          Author Tags

          1. Dirichlet boundary control
          2. Stokes equations
          3. Polygonal/polyhedral domain
          4. Smooth domain
          5. Finite elements
          6. Error estimates

          Author Tags

          1. 49J20
          2. 65N30

          Qualifiers

          • Research-article

          Funding Sources

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Nov 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media