Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Automated Framework for Screening of Glaucoma Through Cloud Computing

Published: 01 May 2019 Publication History

Abstract

In recent times, the use of computer aided diagnosis for detection of Glaucoma from fundus images has been prevalent. In the proposed work, a cloud based system is proposed for automatic and real-time screening of Glaucoma with the use of automatic image processing techniques. The proposed system offers scalability to the developers and easy accessibility to the consumers. The proposed system is device and location independent. The input digital image is analyzed and a comprehensive diagnostic report is generated consisting of detailed analysis of indicative medical parameters like optic-cup-to-disc ratio, optic neuro-retinal rim, ISNT rules making the report informative and clinically significant. With recent advances in the field of communication technologies, the internet facilities are available that make the proposed system an efficient and economical method for initial screening and offer preventive and diagnostic steps in early disease intervention and management. The proposed system can perform an initial screening test in an average time of 6 s on high resolution fundus images. The proposed system has been tested on a fundus database and an average sensitivity of 93.7% has been achieved for Glaucoma cases. In places where there is scarcity of trained ophthalmologists and lack of awareness of such diseases, the cloud based system can be used as an effective diagnostic assistive tool.

References

[1]
Tsai, J. C., How to evaluate the suspicious optic disc. Rev. Ophthalmol. 2005.
[2]
Tuominen, V. J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M. and Isola, J., ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67", in 12:R56.
[3]
Ortega, M., Barreira, N., Novo, J., Penedo, M. G., Pose-Reino, A., and Gomez-Ulla, F., Sirius: A web-based system for retinal image analysis. Int. J. Med. Inform. 79(10):722---732, 2010 ISSN 1386-5056.
[4]
Krieger, M. T., Torreno, O., Trelles, O., and Kranzlmuller, D., Building an open source cloud environment with auto-scaling resources for executing bioinformatics and biomedical workflows. Fut. Gen. Comput. Syst. 67:329---340, 2017 ISSN 0167-739X.
[5]
Nowakowski, P., Bubak, M., Tomasz BartyÅ?ski, Tomasz GubaÅ?a, Harezlak, D., Kasztelnik, M., Malawski, M., and Meizner, J., Cloud computing infrastructure for the VPH community, J. Comput. Sci., 2017. ISSN 1877-7503.
[6]
Rosenthal, A., Mork, P., Li, M. H., Stanford, J., Koester, D., and Reynolds, P., Cloud computing: A new business paradigm for biomedical information sharing. J. Biomed. Inform. 43(2):342---353, 2010 ISSN 1532-0464.
[7]
Shakil, K. A., Zareen, F. J., Alam, M., and Jabin, S., BAMHealthCloud: A biometric authentication and data management system for healthcare data in cloud. J. King Saud University - Computer and Information Sciences, 2017, ISSN 1319-1578.
[8]
Alonso-Calvo, R., Crespo, J., Garc'ia-Remesal, M., Anguita, A., and Maojo, V., On distributing load in cloud computing: A real application for very-large image datasets. Proc. Comput. Sci. 1(1):2669---2677, 2010 ISSN 1877-0509.
[9]
Al Mamun, K. A., Alhussein, M., Sailunaz, K., and Islam, M. S., Cloud based framework for Parkinsonâ?™s disease diagnosis and monitoring system for remote healthcare applications. Fut. Gen. Comput. Syst. 66:36---47, 2017 ISSN 0167-739X.
[10]
Kaur, P. D., and Chana, I., Cloud based intelligent system for delivering health care as a service. Comput. Methods Programs Biomed. 113(1):346---359, 2014 ISSN 0169-2607.
[11]
Yin, F. et al., A cloud-based system for automatic glaucoma screening. 37th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Milan 2015:1596---1599, 2015.
[12]
Cheng, J., Yin, F., Wong, D. W. K., Tao, D., and Liu, J., Sparse dissimilarity-constrained coding for Glaucoma screening. IEEE Trans. Biomed. Eng. 62(5):1395---1403, 2015. https://doi.org/10.1109/TBME.2015.2389234.
[13]
Cheng, J. et al., Superpixel classification based optic disc and optic cup segmentation for Glaucoma screening. IEEE Trans. Med. Imag. 32(6):1019---1032, 2013. https://doi.org/10.1109/TMI.2013.2247770.
[14]
Khalil, T., Usman Akram, M., Khalid, S., and Jameel, A., Improved automated detection of glaucoma from fundus image using hybrid structural and textural features. IET Imag. Process. 11(9):693---700, 2017. https://doi.org/10.1049/iet-ipr.2016.0812.
[15]
Joshi, G. D., Sivaswamy, J., and Krishnadas, S. R., Optic disk and cup segmentation from monocular color retinal images for Glaucoma assessment. IEEE Trans. Med. Imag. 30(6):1192---1205, 2011. https://doi.org/10.1109/TMI.2011.2106509.
[16]
Joshi, G. D., Sivaswamy, J., and Krishnadas, S. R., Depth discontinuity-based cup segmentation from Multiview color retinal images. IEEE Trans. Biomed. Eng. 59(6):1523---1531, 2012. https://doi.org/10.1109/TBME.2012.2187293.
[17]
Issac, A., Parthasarthi, M., and Dutta, M. K., An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. 2nd Int. Conf. Sign. Process. Integ. Netw. (SPIN), Noida 2015:143---147, 2015.
[18]
Issac, A., Partha Sarathi, M., and Dutta, M. K., An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput. Methods Prog. Biomed. 122(2):229---244, 2015 ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2015.08.002.
[19]
Issac, A., Sengar, N., Singh, A., Sarathi, M. P., and Dutta, M. K., Automated computer vision method for optic disc detection from non-uniform illuminated digital fundus images. 2nd Int. Conf. Commun. Control Intell. Syst. (CCIS), Mathura 2016:76---80, 2016. https://doi.org/10.1109/CCIntelS.2016.7878204.
[20]
Partha Sarathi, M., Dutta, M. K., Singh, A., and Travieso, C. M., Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed. Sign. Process. Contrl 25:108---117, ISSN 1746-8094, 2016. https://doi.org/10.1016/j.bspc.2015.10.012.
[21]
Heneghan, C., Flynn, J., O'Keefe, M., and Cahill, M., Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 6:407---429, 2002.
[22]
Aquino, A., Gegundez-Arias, M. E., and Marin, D., Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imag. 29(11):1860---1869, 2010. https://doi.org/10.1109/TMI.2010.2053042.
[23]
Soorya, M., Issac, A., and Dutta, M. K., An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int. J. Med. Inform. 110:52---70.
[24]
Salam, A. A., Khalil, T., Akram, M. U., Jameel, A., and Basit, I., Automated detection of glaucoma using structural and non structural features. Springerplus. 5(1):1519, 2016.
[25]
Noronha, K. P., Acharya, U. R., Nayak, K. P., Martis, R. J., and Bhandary, S. V., Automated classification of glaucoma stages using higher order cumulant features. Biomed. Sign. Process. Contrl. 10:174---183, 2014.
[26]
Acharya, U. R., Ng, E. Y. K., Eugene, L. W. J., Noronha, K. P., Min, L. C., Nayak, K. P., and Bhandary, S. V., Decision support system for the glaucoma using Gabor transformation. Biomed. Sign. Process. Contrl. 15:18---26, 2015.
[27]
Divya, L., and Jacob, J., Performance analysis of Glaucoma detection approaches from fundus images. Proc. Comput. Sci. 143:544---551, 2018.

Cited By

View all
  • (2024)Comparative Analysis of Vanilla CNN and Transfer Learning Models for Glaucoma DetectionJournal of Electrical and Computer Engineering10.1155/2024/80531172024Online publication date: 1-Jan-2024
  • (2022)A real time cloud-based framework for glaucoma screening using EfficientNetMultimedia Tools and Applications10.1007/s11042-021-11559-881:24(34737-34758)Online publication date: 1-Oct-2022
  • (2022)A robust framework for glaucoma detection using CLAHE and EfficientNetThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-021-02114-538:7(2315-2328)Online publication date: 1-Jul-2022
Index terms have been assigned to the content through auto-classification.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Medical Systems
Journal of Medical Systems  Volume 43, Issue 5
May 2019
413 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 May 2019

Author Tags

  1. Base64 encoding
  2. Cloud computing
  3. Django
  4. Docker
  5. Fundus images
  6. Glaucoma
  7. Heroku
  8. ISNT rule
  9. OpenCV
  10. Optic disc
  11. Retinal vessels
  12. Web application

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Comparative Analysis of Vanilla CNN and Transfer Learning Models for Glaucoma DetectionJournal of Electrical and Computer Engineering10.1155/2024/80531172024Online publication date: 1-Jan-2024
  • (2022)A real time cloud-based framework for glaucoma screening using EfficientNetMultimedia Tools and Applications10.1007/s11042-021-11559-881:24(34737-34758)Online publication date: 1-Oct-2022
  • (2022)A robust framework for glaucoma detection using CLAHE and EfficientNetThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-021-02114-538:7(2315-2328)Online publication date: 1-Jul-2022
  • (2021)RETRACTED ARTICLE: Convolution neural network and deep-belief network (DBN) based automatic detection and diagnosis of GlaucomaMultimedia Tools and Applications10.1007/s11042-021-11087-580:19(29481-29495)Online publication date: 1-Aug-2021

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media