Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Survey of Methods for Finding Outliers in Wireless Sensor Networks

Published: 01 January 2015 Publication History

Abstract

Outlier detection is a well studied problem in various fields. The unique characteristics and constraints of wireless sensor networks (WSN) make this problem especially challenging. Sensors can detect outliers for a plethora of reasons and these reasons need to be inferred in real time. Here, we survey the current state of research in this area, compare them and present some future directions for smarter handling of outliers in WSN.

References

[1]
Ozdemir, S., Xiao, Y.: FTDA: outlier detection-based fault-tolerant data aggregation for wireless sensor networks. Secur. Commun. Netw. 6, 702---710 (2013)
[2]
Yang, Z., Wu, C., Chen, T., Zhao, Y., Gong, W., Liu, Y.: Detecting outlier measurements based on graph rigidity for wireless sensor network localization. IEEE Trans. Veh. Technol. (TVT) 62, 374---383 (2013)
[3]
Petrovskiy, M.I.: Outlier detection algorithms in data mining systems. Program. Comput. Softw. 29(4), 228---237 (2003)
[4]
Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics, 4th ed. W. H. Freeman, San Francisco (2002)
[5]
Grubbs, F.E.: Procedures for detecting outlying observations in samples'. Technometrics 11(1), 1---21 (1969)
[6]
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393---422 (2002)
[7]
Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: MobiHoc '07: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, NY, USA, pp 219---228 (2007)
[8]
Böhm, C., Faloutsos, C., Plant, C.: Outlier-robust clustering using independent components. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, pp. 185---198 (2008)
[9]
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, 1st ed. Wiley-Interscience, New York (2001)
[10]
Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: Loci: fast outlier detection using the local correlation integral. In: Proceedings of 19th International Conference on Data Engineering, pp. 315---326 (March 2003)
[11]
Branch, J., Szymanski, B., Giannella, C., Wol, R., Kargupta, H.: In-network outlier detection in wireless sensor networks. In: 26th IEEE International Conference on Distributed Computing Systems, ser. Distributed Computing Systems, pp. 51---60 (July 2006)
[12]
Branch, J., Szymanski, B., Giannella, C., Wol, R., Kargupta, H.: In-network outlier detection in wireless sensor networks. Knowl. Inf. Syst. 34(1), 23---54 (2013)
[13]
Dutta, H., Giannella, C., Borne, K.D., Kargupta, H.: Distributed top-k outlier detection from astronomy catalogs using the demac system. In: SDM (2007)
[14]
Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: SIGMOD Conference, pp. 93---104 (2000)
[15]
Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inf. 4, 1---9 (1974)
[16]
Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online outlier detection in sensor data using non-parametric models. In: VLDB'06: Proceedings of the 32nd International Conference on Very Large Data Bases. VLDB Endowment, pp. 187---198 (2006)
[17]
Zhuang, Y., Chen, L.: In-network outlier cleaning for data collection in sensor networks. In: CleanDB (2006)
[18]
Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561---580 (2007)
[19]
Zhang, K., Hutter, M., Jin, W.: A new local distance-based outlier detection approach for scattered real-world data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Bao, H.T. (eds.) Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'09), Ser. LNAI., vol. 5467, pp. 813---822. Springer, Berlin (2009)
[20]
Li, W., Joshi, A.: Outlier detection in ad hoc networks using Dempster---Shafer theory. In: 10th International Conference on Mobile Data Management (MDM 2009). IEEE Computer Society, pp. 112---121 (May 2009)
[21]
Shafer, G.: Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
[22]
Giatrakos, N., Kotidis, Y., Deligiannakis, A., Vassalos, V., Theodoridis, Y.: Taco: tunable approximate computation of outliers in wireless sensor networks. In: ACM International Conference on Management of Data, Ser. SIGMOD (June 2010)
[23]
Burdakis, S., Deligiannakis, A.: Detecting outliers in sensor networks using the geometric approach. In: 28th IEEE International Conference on Data Engineering, Ser. Data Engineering (April 2012)
[24]
Zhang, Y., Hamm, N., Meratnia, N., Stein, A., Voort, M., Havinga, P.: Statistics-based outlier detection for wireless sensor networks. J. Geogr. Inf. Sci. 26, 1373---1392 (2012)
[25]
McDonald, D., Madria, S., Ercal, F., Birmingham, R., Lake, T.: Ctod: collaborative tree-based outlier detection in wireless sensor networks. In: MOBIWAC, ACM, IEEE Computer Society, pp. 1---10 (May 2012)
[26]
Zhang, Y., Meratnia, N., Havinga, P.: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine. J. Ad Hoc Netw. 11, 1062---1074 (May 2013)

Cited By

View all
  • (2024)Design and Implementation of a Routing Protocol for VANET to Improve the QoS of the NetworkJournal of Network and Systems Management10.1007/s10922-024-09821-z32:3Online publication date: 25-Apr-2024
  • (2023)An Improved Data Compression Framework for Wireless Sensor Networks Using Stacked Convolutional Autoencoder (S-CAE)SN Computer Science10.1007/s42979-023-01845-74:4Online publication date: 24-May-2023
  • (2023)Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor NetworksJournal of Network and Systems Management10.1007/s10922-023-09794-532:1Online publication date: 29-Dec-2023
  • Show More Cited By
  1. A Survey of Methods for Finding Outliers in Wireless Sensor Networks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of Network and Systems Management
    Journal of Network and Systems Management  Volume 23, Issue 1
    January 2015
    248 pages

    Publisher

    Plenum Press

    United States

    Publication History

    Published: 01 January 2015

    Author Tags

    1. Centralized outlier detection
    2. Density based algorithms
    3. Distance based algorithms
    4. Distributed outlier detection
    5. Sensor networks
    6. Trust based algorithms
    7. Un-supervised outlier detection

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Design and Implementation of a Routing Protocol for VANET to Improve the QoS of the NetworkJournal of Network and Systems Management10.1007/s10922-024-09821-z32:3Online publication date: 25-Apr-2024
    • (2023)An Improved Data Compression Framework for Wireless Sensor Networks Using Stacked Convolutional Autoencoder (S-CAE)SN Computer Science10.1007/s42979-023-01845-74:4Online publication date: 24-May-2023
    • (2023)Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor NetworksJournal of Network and Systems Management10.1007/s10922-023-09794-532:1Online publication date: 29-Dec-2023
    • (2022)Detecting Anomaly Data for IoT Sensor NetworksScientific Programming10.1155/2022/46713812022Online publication date: 1-Jan-2022
    • (2020)RETRACTED ARTICLE: Intelligent fuzzy rule-based approach with outlier detection for secured routing in WSNSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-020-04955-z24:21(16483-16497)Online publication date: 1-Nov-2020
    • (2019)A Lightweight Anomaly Detection Method Based on SVDD for Wireless Sensor NetworksWireless Personal Communications: An International Journal10.1007/s11277-019-06143-1105:4(1235-1256)Online publication date: 1-Apr-2019
    • (2019)Multi-model Z-compression for high speed data streaming and low-power wireless sensor networksDistributed and Parallel Databases10.1007/s10619-019-07265-y38:1(153-191)Online publication date: 29-Mar-2019
    • (2018)At Sensor Diagnosis for Smart HealthcareInternational Journal of Advanced Pervasive and Ubiquitous Computing10.4018/IJAPUC.201810010110:4(1-13)Online publication date: 1-Oct-2018
    • (2018)Noise Tolerant Localization for Sensor NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2018.285275426:4(1701-1714)Online publication date: 1-Aug-2018
    • (2017)Spatial anomaly detection in sensor networks using neighborhood informationInformation Fusion10.1016/j.inffus.2016.04.00733:C(41-56)Online publication date: 1-Jan-2017
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media