Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications

Published: 01 August 2009 Publication History

Abstract

We study sample approximations of chance constrained problems. In particular, we consider the sample average approximation (SAA) approach and discuss the convergence properties of the resulting problem. We discuss how one can use the SAA method to obtain good candidate solutions for chance constrained problems. Numerical experiments are performed to correctly tune the parameters involved in the SAA. In addition, we present a method for constructing statistical lower bounds for the optimal value of the considered problem and discuss how one should tune the underlying parameters. We apply the SAA to two chance constrained problems. The first is a linear portfolio selection problem with returns following a multivariate lognormal distribution. The second is a joint chance constrained version of a simple blending problem.

References

[1]
Charnes, A., Cooper, W.W., Symmonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235---263 (1958)
[2]
Prékopa, A.: Stochastic Programming. Kluwer Academic, Dordrecht (1995)
[3]
Dupaă?ová, J., Gaivoronski, A., Kos, Z., Szántai, T.: Stochastic programming in water management: a case study and a comparison of solution techniques. Eur. J. Oper. Res. 52, 28---44 (1991)
[4]
Henrion, R., Li, P., Möller, A., Steinbach, S.G., Wendt, M., Wozny, G.: Stochastic optimization for operating chemical processes under uncertainty. In: Grötschel, M., Krunke, S., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 457---478. Springer, Berlin (2001)
[5]
Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45, 247---262 (2003)
[6]
Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55---77 (2000)
[7]
Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674---699 (2008)
[8]
Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969---996 (2006)
[9]
Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in OR & MS, vol. 10, pp. 353---425. North-Holland, Amsterdam (2003)
[10]
Atlason, J., Epelman, M.A., Henderson, S.G.: Optimizing call center staffing using simulation and analytic center cutting plane methods. Manag. Sci. 54, 295---309 (2008)
[11]
Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674---699 (2008)
[12]
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
[13]
Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1---17 (1996)
[14]
Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum observations. Ann. Math. Stat. 23, 493---507 (1952)
[15]
Markowitz, H.: Portfolio selection. J. Financ. 7, 77---97 (1952)
[16]
Wang, Y., Chen, Z., Zhang, K.: A chance-constrained portfolio selection problem under t-distribution. Asia Pac. J. Oper. Res. 24(4), 535---556 (2007)
[17]
Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust convex programs. Optimization online (www.optimization-online.org) (2007)
[18]
Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control. 51, 742---753 (2006)
[19]
Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic Programming (lecture notes) (2007)
[20]
Law, A., Kelton, W.D.: Simulation Modeling and Analysis. Industrial Engineering and Management Science Series. McGraw---Hill Science/Engineering/Math, New York (1999)

Cited By

View all
  • (2024)Robust Risk Quantification via Shock Propagation in Financial NetworksOperations Research10.1287/opre.2020.072272:1(1-18)Online publication date: 1-Jan-2024
  • (2024)Sidewalk‐based bicycle path network design incorporating equity in cycling timeComputer-Aided Civil and Infrastructure Engineering10.1111/mice.1324039:20(3063-3082)Online publication date: 1-Oct-2024
  • (2024)Joint Signal Timing and Trajectory Control With Uncertainty in Connected Automated Vehicle DynamicsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.338981825:9(12631-12643)Online publication date: 1-Sep-2024
  • Show More Cited By
  1. Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of Optimization Theory and Applications
      Journal of Optimization Theory and Applications  Volume 142, Issue 2
      August 2009
      158 pages

      Publisher

      Plenum Press

      United States

      Publication History

      Published: 01 August 2009

      Author Tags

      1. Chance constraints
      2. Portfolio selection
      3. Sample average approximation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 25 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Robust Risk Quantification via Shock Propagation in Financial NetworksOperations Research10.1287/opre.2020.072272:1(1-18)Online publication date: 1-Jan-2024
      • (2024)Sidewalk‐based bicycle path network design incorporating equity in cycling timeComputer-Aided Civil and Infrastructure Engineering10.1111/mice.1324039:20(3063-3082)Online publication date: 1-Oct-2024
      • (2024)Joint Signal Timing and Trajectory Control With Uncertainty in Connected Automated Vehicle DynamicsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.338981825:9(12631-12643)Online publication date: 1-Sep-2024
      • (2024)Robust optimization for spread quality and shortfall in guaranteed targeted display advertising planningComputers and Operations Research10.1016/j.cor.2023.106421161:COnline publication date: 1-Jan-2024
      • (2024)Approximate Methods for Solving Chance-Constrained Linear Programs in Probability Measure SpaceJournal of Optimization Theory and Applications10.1007/s10957-023-02342-w200:1(150-177)Online publication date: 1-Jan-2024
      • (2024)Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspectiveComputational Optimization and Applications10.1007/s10589-024-00573-988:3(819-847)Online publication date: 1-Jul-2024
      • (2024)A theoretical and computational analysis of full strong-branchingMathematical Programming: Series A and B10.1007/s10107-023-01977-x205:1-2(303-336)Online publication date: 1-May-2024
      • (2024)Don’t Explain Noise: Robust Counterfactuals for Randomized EnsemblesIntegration of Constraint Programming, Artificial Intelligence, and Operations Research10.1007/978-3-031-60597-0_19(293-309)Online publication date: 28-May-2024
      • (2023)Efficient Algorithms for Stochastic Ride-Pooling Assignment with Mixed FleetsTransportation Science10.1287/trsc.2021.034957:4(908-936)Online publication date: 1-Jul-2023
      • (2023)Constrained Learning With Non-Convex LossesIEEE Transactions on Information Theory10.1109/TIT.2022.318794869:3(1739-1760)Online publication date: 1-Mar-2023
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media