Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Generation of orthogonal rational functions by procedures for structured matrices

Published: 01 February 2022 Publication History

Abstract

The problem of computing recurrence coefficients of sequences of rational functions orthogonal with respect to a discrete inner product is formulated as an inverse eigenvalue problem for a pencil of Hessenberg matrices. Two procedures are proposed to solve this inverse eigenvalue problem, via the rational Arnoldi iteration and via an updating procedure using unitary similarity transformations. The latter is shown to be numerically stable. This problem and both procedures are generalized by considering biorthogonal rational functions with respect to a bilinear form. This leads to an inverse eigenvalue problem for a pencil of tridiagonal matrices. A tridiagonal pencil implies short recurrence relations for the biorthogonal rational functions, which is more efficient than the orthogonal case. However, the procedures solving this problem must rely on nonunitary operations and might not be numerically stable.

References

[1]
Beckermann B, Derevyagin M, and Zhedanov A The linear pencil approach to rational interpolation J. Approx. Theory 2010 162 6 1322-1346
[2]
Bennett JM Triangular factors of modified matrices Numer. Math. 1965 7 3 217-221
[3]
Boley D and Golub GH A survey of matrix inverse eigenvalue problems Inverse Probl. 1987 3 4 595-622
[4]
Bultheel A and Van Barel M Vector orthogonal polynomials and least squares approximation SIAM J. Matrix Anal.Appl. 1995 16 3 863-885
[5]
Bultheel A, Van Barel M, and Van gucht P Orthogonal basis functions in discrete least-squares rational approximation J. Comput. Appl. Math. 2004 164-165 175-194 Proceedings of the 10th International Congress on Computational and Applied Mathematics
[6]
Camps, D., Mach, T., Vandebril, R., Watkins, D.S.: On pole-swapping algorithms for the eigenvalue problem (2020)
[7]
Camps D, Meerbergen K, and Vandebril R A Rational QZ method SIAM J. Matrix Anal.Appl. 2019 40 3 943-972
[8]
Chu MT Inverse eigenvalue problems SIAM Rev. 1998 40 1 1-39
[9]
Davis PJ Interpolation and Approximation. Dover Books on Advanced Mathematics 1975 New York Dover
[10]
Elhay S, Golub GH, and Kautsky J Updating and downdating of orthogonal polynomials with data fitting applications SIAM J. Matrix Anal.Appl. 1991 12 2 327-353
[11]
Fasino D Rational Krylov matrices and QR steps on hermitian diagonal-plus-semiseparable matrices Numer. Linear Algebra Appl. 2005 12 8 743-754
[12]
Gallivan, K., Grimme, E., Van Dooren, P.: Padé approximation of large-scale dynamic systems with Lanczos methods. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 1, pp. 443–448. IEEE (1994)
[13]
Gallivan K, Grimme E, and Van Dooren P A rational Lanczos algorithm for model reduction Numer. Algoritm. 1996 12 1 33-63
[14]
Gill PE, Golub GH, Murray W, and Saunders MA Methods for modifying matrix factorizations Math. Comput. 1974 28 126 505-535
[15]
Gragg WB and Harrod WJ The numerically stable reconstruction of Jacobi matrices from spectral data Numer. Math. 1984 44 317-335
[16]
Gragg WB and Lindquist A On the partial realization problem Linear Algebra Appl. 1983 50 277-319
[17]
Gutknecht MH Lanczos-type solvers for nonsymmetric linear systems of equations Acta Numer. 1997 6 271-397
[18]
Horn RA and Johnson CR Matrix Analysis 1985 Cambridge Cambridge University press
[19]
Liesen J and Strakoš Z Krylov Subspace Methods: Principles and Analysis 2013 New York Oxford University Press
[20]
Mach T, Van Barel M, and Vandebril R Inverse eigenvalue problems for extended Hessenberg and extended tridiagonal matrices J. Comput. Appl. Math. 2014 272 377-398
[21]
Olsson KHA and Ruhe A Rational Krylov for eigenvalue computation and model order reduction BIT Numer. Math. 2006 46 S99-S111
[22]
Reichel L Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation SIAM J. Matrix Anal.Appl. 1991 12 3 552-564
[23]
Reichel L Construction of polynomials that are orthogonal with respect to a discrete bilinear form Adv. Comput. Math. 1993 1 2 241-258
[24]
Reichel L, Ammar G, and Gragg W Discrete least squares approximation by trigonometric polynomials Math. Comput. 1991 57 273-289
[25]
Ruhe A Rational Krylov sequence methods for eigenvalue computation Linear Algebra Appl. 1984 58 391-405
[26]
Ruhe A Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. Matrix pairs Linear Algebra Appl. 1994 197 283-295
[27]
Rutishauser, H.: On Jacobi rotation patterns. In: Experimental Arithmetic, High Speed Computing and Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 15, pp. 241–258. American Mathematical Society, Providence (1963)
[28]
Szegő G Orthogonal Polynomials, 4th edn 1975 Providence American Mathematical Society
[29]
Van Barel M, Fasino D, Gemignani L, and Mastronardi N Orthogonal rational functions and structured matrices SIAM J. Matrix Anal.Appl. 2005 26 3 810-829
[30]
Van Buggenhout N, Van Barel M, and Vandebril R Biorthogonal rational Krylov subspace methods Electron. Trans. Numer. Anal. 2019 51 451-468
[31]
Van Dooren P A generalized eigenvalue approach for solving Riccati equations SIAM J. Sci. Stat. Comput. 1981 2 2 121-135
[32]
Wilkinson, J.H.: Plane rotations in floating-point arithmetic. In: Experimental Arithmetic, High Speed Computing and Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 15, pp. 185–198. American Mathematical Society, Providence (1963)
[33]
Wilkinson JH Convergence of the LR, QR, and related algorithms Comput. J. 1965 8 1 77-84
[34]
Xu WR, Bebiano N, and Chen GL An inverse eigenvalue problem for pseudo-Jacobi matrices Appl. Math. Comput. 2019 346 423-435

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Numerical Algorithms
Numerical Algorithms  Volume 89, Issue 2
Feb 2022
458 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 February 2022
Accepted: 27 April 2021
Received: 08 March 2021

Author Tags

  1. Orthogonal rational functions
  2. Inverse eigenvalue problem
  3. Rational Krylov subspaces

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media