Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Quantum state control, entanglement, and readout of the Josephson persistent-current qubit

Published: 01 June 2009 Publication History

Abstract

Quantum state control including entanglement, and readout of the Josephson persistent-current qubit, flux qubit, are reviewed. First, we mention our single-shot readout of quantum superposition state of a flux qubit by a current biased dc-SQUID. Second, we mention entangled state and vacuum Rabi oscillations of a flux-qubit LC-resonator system where qubit-resonator coupled state are controlled by a combination of microwave and DC-shift pulses, resulting in a controlling and measuring sequence analogous to atomic cavity QED. Third, we report our recent progress in high fidelity readout of a flux qubit state via Josephson bifurcation amplifier (JBA).

References

[1]
Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josephson persistent current qubit. Science 285, 1036 (1999).
[2]
Orlando, T.P., Mooij, J.E., Lin, T., van der Wal, C.H., Levitov, L., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15-398 (1999).
[3]
van der Wal, C.H., ter Haar, A.C.J., Wilhelm, F.K., Schouten, R.N., Harmans, C.J.P.M., Orlando, T.P., Lloyd, S., Mooij, J.E.: Quantum superposition of macroscopic persistent-current states. Science 290, 773 (2000).
[4]
Nakamura, Y., Pashkin, Y.A., Tsai, J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 (1999).
[5]
Pashkin, Y.A., Yamamoto, T., Astafiev, O., Nakamura, Y., Averin, D.V., Tsai, J.S.: Quantum oscillations in two coupled charge qubits. Nature 421, 823 (2003).
[6]
Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2003).
[7]
Bertet, P., Chiorescu, I., Burkard, G., Semba, K., Harmans, C.J.P.M., DiVincenzo, D.P., Mooij, J.E.: Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005).
[8]
Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of flux qubits due to 1/f flux noise. Phys. Rev. Lett. 97, 167001 (2006).
[9]
Kakuyanagi, K., Meno, T., Saito, S., Nakano, H., Semba, K., Takayanagi, H., Deppe, F., Shnirman, A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007).
[10]
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008).
[11]
Dolan, G.J.: Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337 (1977).
[12]
Saito, S., Thorwart, M., Tanaka, H., Ueda, M., Nakano, H., Semba, K., Takayanagi, H.: Multiphoton transitions in a macroscopic quantum two-state system. Phys. Rev. Lett. 93, 037001 (2004).
[13]
Nakano, H., Tanaka, H., Saito, S., Semba, K., Takayanagi, H., Ueda, M.: A theoretical analysis of flux-qubit measurements with a dc-SQUID cond-mat/0406622.
[14]
Takayanagi, H., Tanaka, H., Saito, S., Nakano. H.: Observation of qubit state with a dc-SQUID and dissipation effect in the SQUID. Phys. Scr. T102, 95 (2002).
[15]
Saito, S., Tanaka, H., Nakano, H., Ueda, M., Takayanagi, H.: Incoherent and coherent tunneling of macroscopic phase in flux qubits. In: Leggett, A.J., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems, pp. 161-169. Kluwer, New York (2004).
[16]
Tanaka, H., Sekine, Y., Saito, S., Takayanagi, H.: Physica C 368, 300 (2002).
[17]
Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985).
[18]
Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. 14, R415 (2002).
[19]
Tanaka, H., Saito, S., Takayanagi, H.: Towards the Controllable Quantum States Mesoscopic Superconductivity and Spintronics. pp. 366-371. World Scientific, Singapore (2003).
[20]
Astafiev, O., Pashkin, Y.A., Yamamoto, T., Nakamura, Y., Tsai, J.S.: Single-shot measurement of the Josephson charge qubit. Phys. Rev. B 69, 180507 (2004).
[21]
Nakano, H., Takayanagi, H.: Dynamics in the read-out process of the superconducting flux-qubit. J. Phys. Soc. Jpn. 72(Supplement A), 1-2 (2003).
[22]
Makhlin, Y., Schön, G., Shnirman, A.: Quantum state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001).
[23]
Johansson, J., Saito, S., Meno, T., Nakano, H., Ueda, M., Semba, K., Takayanagi, H.: Vacuum rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006).
[24]
Berman, P.R. (ed.): Cavity Quantum Electrodynamics. Academic Press, Boston, MA (1994).
[25]
Haroche, S., Raimond, J.-M.: Exploring the Quantum. Oxford University Press, Oxford New York (2006).
[26]
Raimond, J., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001).
[27]
Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).
[28]
Weisbuch, C., Nishioka, M., Ishikawa, A., Arakawa, Y.: Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992).
[29]
Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V. D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004).
[30]
Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200 (2004).
[31]
Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159 (2004).
[32]
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004).
[33]
Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J.M., Haroche, S.: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996).
[34]
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002).
[35]
Martinis, J.M. et al.: Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).
[36]
Yu, Y., Han, S., Chu, X., Chu, S.-I., Wang, Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889 (2002).
[37]
Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003).
[38]
Duty, T., Gunnarsson, D., Bladh K., Delsing, P.: Coherent dynamics of a Josephson charge qubit. Phys. Rev. B 69, 140503(R) (2004).
[39]
Kutsuzawa, T., Saito, S., Tanaka, H., Nakano, H., Semba, K., Takayanagi, H.: Coherent control of a flux qubit by phase-shifted resonant microwave pulses. Appl. Phys. Lett. 87, 073501 (2005).
[40]
Saito, S., Meno, T., Ueda, M., Tanaka, H., Semba, K., Takayanagi, H.: Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96, 107001 (2006).
[41]
McDermott, R., Simmonds, R.W., Steffen, M., Cooper, K.B., Cicak, K., Osborn, K.D., Oh, S., Pappas, D.P., Martinis, J.M.: Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299 (2005).
[42]
Sillanpää Mika, A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007).
[43]
Majer, J., Chow, J.M., Gambetta, J.M., Jens, K., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007).
[44]
Siddiqi, I., Vijay, R., Pierre, F., Wilson, C.M., Metcalfe, M., Rigetti, C., Frunzio, L., Devoret, M.: RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004).
[45]
Siddiqi, I., Vijay, R., Pierre, F., Wilson, C.M., Frunzio, L., Metcalfe, M., Rigetti, C., Schoelkopf, R.J., Devoret, M.: Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).
[46]
Siddiqi, I., Vijay, R., Metcalfe, M., Boaknin, E., Frunzio, L., Schoelkopf, R.J., Devoret, M.: Dispersive measurements of superconducting qubit coherence with a fast latching readout. Phys. Rev. B 73, 054510 (2006).
[47]
Lupascu, A., Saito, S., Picot, T., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119 (2007).
[48]
Nakano, H., Saito, S., Semba, K., Takayanagi, H.: Quantum time-evolution in qubit readout process with a Josephson bifurcation amplifier. arXiv:0808.1798.
[49]
Kakuyanagi, K. et al. (in preparation).
  1. Quantum state control, entanglement, and readout of the Josephson persistent-current qubit

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Quantum Information Processing
      Quantum Information Processing  Volume 8, Issue 2-3
      June 2009
      224 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 June 2009

      Author Tags

      1. 03.65.-w
      2. 03.65.Ud
      3. 03.67.Lx
      4. 42.50.Pq
      5. 85.25.Cp
      6. 85.25.Dq
      7. Entangled state
      8. JBA: Josephson bifurcation amplifier
      9. Josephson junctions
      10. Quantum bits

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media