Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Entanglement property of the Werner state in accelerated frames

Published: 01 October 2019 Publication History

Abstract

We study the entanglement property of a free Dirac field in a Werner state as seen by two relatively accelerated parties. We study the concurrence, negativity, mutual information and $$\pi $$-tangle of the tripartite system. We show how these entanglement properties depend on both the free parameter F, which is a real parameter called fidelity, and the acceleration parameter r. The degree of entanglement is degraded by the Unruh effect, but we notice that the Werner state always remains entangled even in the acceleration limit, and thus, it can become a good candidate to quantum teleportation in uniform acceleration frame. We notice that the entropy $$S(\rho _{A\, \mathrm{I}\, \mathrm{II}})$$ decreases with the free parameter F, and also $$S(\rho _{A\, \mathrm{I}\, \mathrm{II}})$$, $$S(\rho _{A})$$ and $$S(\rho _{\mathrm{I}\, \mathrm{II}})$$ are independent of the acceleration parameter r. The von Neumann entropy is not a good entanglement measure any more for this mixed state. We verify that the Werner state in a noninertial frame obeys the Coffman–Kundu–Wootters (CKW) monogamous inequality and find that two useful relations for the concurrence and negativity.

References

[1]
Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D. 14, 870 (1976)
[2]
Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)
[3]
Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 8, 609 (1975)
[4]
Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)
[5]
Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)
[6]
Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)
[7]
Fuentes, I., Mann, R.B., Martín-Martínez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)
[8]
Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)
[9]
Alsing, P.M., Fuentes, I.: Observer dependent entanglement. Class. Quantum Grav. 29, 224001 (2012)
[10]
Hwang, M.R., Jung, E., Park, D.: Three-tangle in non-inertial frame. Class. Quantum Grav. 29(22), 224004 (2012)
[11]
Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)
[12]
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
[13]
Wang, J., Jiang, J.: Multipartite entanglement of Fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)
[14]
Qiang, W.C., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Multipartite entanglement of fermionic systems in noninertial frames revisited. arXiv:1711.04230v1 [quant-ph]
[15]
Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86, 012306 (2012)
[16]
Wang, J., Jiang, J.: Erratum: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 97, 029902 (2018)
[17]
Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)
[18]
Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)
[19]
Khan, S.: Tripartite entanglement of fermionic system in accelerated frames. Ann. Phys. 348, 270 (2014)
[20]
Khan, S., Khan, N.A., Khan, M.K.: Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames. Commun. Theor. Phys. 61(3), 281 (2014)
[21]
Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86(2), 025026 (2012)
[22]
Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83(5), 052306 (2011)
[23]
Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 1320 (2011)
[24]
Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University, Cambridge (1982)
[25]
Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)
[26]
Qiang, W.C., Zhang, L.: Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames. Phys. Lett. B 742, 383 (2015)
[27]
Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019)
[28]
Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14(2), 21603 (2019)
[29]
Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)
[30]
Weinstein, Y.S.: Entanglement dynamics in three-qubit X states. Phys. Rev. A 82, 032326 (2010)
[31]
Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)
[32]
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)
[33]
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
[34]
Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)
[35]
Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)
[36]
Downes, T.G., Fuentes, I., Ralph, T.C.: Entangling moving cavities in noninertial frames. Phys. Rev. Lett. 106, 210502 (2010)
[37]
Bruschi, D.E., Louko, J., Fuentes, I.: Voyage to Alpha Centauri: entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)
[38]
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
[39]
Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)
[40]
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
[41]
Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)
[42]
Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: J. Phys. B At. Mol. Opt. Phys. 40, 3401 (2007)
[43]
Horn, R.A., Johnson, C.R.: Matrix Analysis, p. 205, 415, 441. Cambridge University Press, Cambridge (1987)
[44]
Życzkowski, K.: Volume of the set of separable states. II. Phys. Rev. A 60, 3496 (1999)
[45]
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
[46]
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Quantum Information Processing
Quantum Information Processing  Volume 18, Issue 10
Aug 2019
593 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 October 2019

Author Tags

  1. Werner state
  2. Noninertial frame
  3. Concurrence
  4. Negativity
  5. Mutual information
  6. $$\pi $$-tangle

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Entanglement measures of a pentapartite W-class state in the noninertial frameQuantum Information Processing10.1007/s11128-021-03374-921:2Online publication date: 1-Feb-2022
  • (2021)Generating entangled fermions by projective measurements in Gauss–Bonnet spacetimeQuantum Information Processing10.1007/s11128-021-02995-420:2Online publication date: 1-Feb-2021
  • (2020)Effect of partial-collapse measurement on quantum entanglement in noninertial framesQuantum Information Processing10.1007/s11128-020-2600-319:3Online publication date: 10-Feb-2020
  • (2020)Optimal qubit-bases for preserving two-qubit entanglement against Pauli noisesQuantum Information Processing10.1007/s11128-020-02889-x19:10Online publication date: 8-Oct-2020
  • (2020)Measurement-induced geometric measures of correlations based on the trace distance for two-qubit X statesQuantum Information Processing10.1007/s11128-020-02680-y19:7Online publication date: 21-May-2020
  • (2020)Genuine tripartite nonlocality of GHZ state in noninertial framesQuantum Information Processing10.1007/s11128-020-02645-119:5Online publication date: 17-Mar-2020

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media