Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Parallelizing MCMC for Bayesian spatiotemporal geostatistical models

Published: 01 December 2007 Publication History

Abstract

When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatistical problems, challenges arise as a consequence of memory requirements, computing costs, and convergence monitoring. This article describes the parallelization of a reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to generate posterior samples efficiently. The algorithm is implemented using the Parallel Linear Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation experiments that are implemented using a cluster with 25 processors. The usefulness of the method is illustrated with an application to sulfur dioxide concentration data from the Air Quality System database of the U.S. Environmental Protection Agency.

References

[1]
Adams, N.M., Kirby, S.P.J., Harris, P., Clegg, D.B.: A review of parallel processing for statistical computation. Stat. Comput. 6, 37-49 (1996).
[2]
Agarwal, D.K., Gelfand, A.E.: Slice sampling for simulation based fitting of spatial data models. Stat. Comput. 15, 61-69 (2002).
[3]
Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, London (2004).
[4]
Blackford, L.S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997).
[5]
Chib, S.: Bayes regression with autoregressive errors. A Gibbs sampling approach. J. Econom. 58, 275-294 (1993).
[6]
Christiansen, C.L., Morris, C.N.: Hierarchical Poisson regression modeling. J. Am. Stat. Assoc. 92, 618-632 (1997).
[7]
Cowles, M.K., Zimmerman, D.L., Christ, A., McGinnis, D.L.: Combining snow water equivalent data from multiple sources to estimate spatio-temporal trends and compare measurement systems. J. Agric. Biol. Environ. Stat. 7, 536-557 (2002).
[8]
Daniels, M.J.: A prior for the variance in hierarchical models. Can. J. Stat. 27, 567-578 (1999).
[9]
Diggle, P., Ribeiro, P.J.: Bayesian inference in Gaussian model-based geostatistics. Geogr. Environ. Model. 6, 129-146 (2002).
[10]
Duff, I.S., van der Vorst, H.A.: Developments and trends in the parallel solution of linear systems. Parallel Comput. 25, 1931-1970 (1999).
[11]
Finley, A.O., Banerjee, S., Carlin, B.P.: spBayes: spBayes Fits Gaussian Models with Potentially Complex Hierarchical Error Structures. R package version 0.0-1 (2006). http://blue.fr.umn. edu/spatialBayes.
[12]
Gilks, W.R., Best, N.G., Tan, K.K.C.: Adaptive rejection Metropolis sampling within Gibbs sampling (Corr: 97V46 p. 541-542 with R.M. Neal). Appl. Stat. 44, 455-472 (1995).
[13]
Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M.: Markov chain Monte Carlo in practice: a roundtable discussion. Am. Stat. 52, 93-100 (1998).
[14]
Neal, R.M.: Slice sampling. Ann. Stat. 31, 705-767 (2003).
[15]
Nychka, D.: Fields: tools for spatial data. R package version 3.04 (2005). http://www.image.ucar.edu/GSP/Software/Fields.
[16]
Reed, D.A.: Grids, the teragrid, and beyond. Computer 36, 62-68 (2003).
[17]
Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far East J. Theor. Stat. 4, 207-236 (2000).
[18]
Rossini, A., Tierney, L., Li, N.: Simple parallel statistical computing in R. Working paper, UW Biostatistics (2003).
[19]
Rue, H.: Fast sampling of Gaussian Markov random fields. J. Roy. Stat. Soc. Ser. B: Stat. Methodol. 63, 325-338 (2001).
[20]
Rue, H., Martino, S.: Approximate inference for hierarchical Gaussian Markov random field models, Technical report, Department of Mathematical Sciences, NTNU, Norway (2005).
[21]
Rue, H., Tjelmeland, H.: Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Stat. 29, 31-9 (2002).
[22]
Sargent, D.J., Hodges, J.S., Carlin, B.P.: Structured Markov chain Monte Carlo. J. Comput. Graph. Stat. 9, 217-234 (2000).
[23]
Schervish, M.J.: Applications of parallel computation to statistical inference. J. Am. Stat. Assoc. 83, 976-983 (1988).
[24]
Sylwestrowicz, J.D.: Parallel processing in statistics. In: H. Caussinus, P. Ettinger, R. Tomassone (eds.) COMPSTAT 1982, Proceedings in Computational Statistics, pp. 131-136. Physica-Verlag Ges.m.b.H. (1982).
[25]
van de Geijn, R.A.: Using PLAPACK. MIT Press (1997).
[26]
Whiley, M., Wilson, S.P.: Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models. Stat. Comput. 14, 171-179 (2004).
[27]
Wilkinson, D.J.: Parallel Bayesian computation. In: Kontoghiorghes, E.J. (ed.) Handbook of Parallel Computing and Statistics, pp. 481-512. Dekker/CRC Press, New York (2005).

Cited By

View all
  • (2016)Population-Based MCMC on Multi-Core CPUs, GPUs and FPGAsIEEE Transactions on Computers10.1109/TC.2015.243925665:4(1283-1296)Online publication date: 1-Apr-2016
  • (2015)Data augmentation and parameter expansion for independent or spatially correlated ordinal dataComputational Statistics & Data Analysis10.1016/j.csda.2015.03.02090:C(1-14)Online publication date: 1-Oct-2015
  • (2011)A CyberGIS gateway approach to interoperable access to the National Science Foundation TeraGrid and the Open Science GridProceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery10.1145/2016741.2016786(1-8)Online publication date: 18-Jul-2011
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Statistics and Computing
Statistics and Computing  Volume 17, Issue 4
December 2007
117 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 December 2007

Author Tags

  1. Bayesian inference
  2. Markov chain Monte Carlo
  3. Parallel computing
  4. Spatial modeling

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)Population-Based MCMC on Multi-Core CPUs, GPUs and FPGAsIEEE Transactions on Computers10.1109/TC.2015.243925665:4(1283-1296)Online publication date: 1-Apr-2016
  • (2015)Data augmentation and parameter expansion for independent or spatially correlated ordinal dataComputational Statistics & Data Analysis10.1016/j.csda.2015.03.02090:C(1-14)Online publication date: 1-Oct-2015
  • (2011)A CyberGIS gateway approach to interoperable access to the National Science Foundation TeraGrid and the Open Science GridProceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery10.1145/2016741.2016786(1-8)Online publication date: 18-Jul-2011
  • (2011)Parallel multivariate slice samplingStatistics and Computing10.1007/s11222-010-9178-z21:3(415-430)Online publication date: 1-Jul-2011
  • (2009)TeraGrid GIScience GatewayInternational Journal of Geographical Information Science10.1080/1365881090275497723:5(631-656)Online publication date: 1-May-2009
  • (2009)A theoretical approach to the use of cyberinfrastructure in geographical analysisInternational Journal of Geographical Information Science10.1080/1365881080191850923:2(169-193)Online publication date: 1-Feb-2009
  • (2009)A statistical approach to the problem of restoring damaged and contaminated imagesPattern Recognition10.1016/j.patcog.2008.06.00942:1(115-125)Online publication date: 1-Jan-2009

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media