Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Bayesian variable selection for matrix autoregressive models

Published: 11 March 2024 Publication History

Abstract

A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.

References

[1]
Ahelegbey D, Billio M, and Casarin RBayesian graphical models for structural vector autoregressive processesJ. Appl. Econom.201631357-386https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2443
[2]
Bader B and Kolda T Algorithm 862: Matlab tensor classes for fast algorithm prototyping ACM Trans. Math. Softw. 2006 32 635-653
[3]
Bai J and Ng S Determining the number of factors in approximate factor models Econometrica 2002 70 191-221
[4]
Bańbura M, Giannone D, and Reichlin L Large Bayesian vector auto regressions J. Appl. Econom. 2010 25 71-92
[5]
Barrett BE and Gray JB A computational framework for variable selection in multivariate regression Stat. Comput. 1994 4 203-212
[6]
Billio M, Casarin R, Iacopini M, and Kaufmann S Bayesian dynamic tensor regression J. Bus. Econ. Stat. 2022
[7]
Bucci A, Ippoliti L, and Valentini P Comparing unconstrained parametrization methods for return covariance matrix prediction Stat. Comput. 2022 32 90
[8]
Camehl A Penalized estimation of panel vector autoregressive models: a panel lasso approach Int. J. Forecast. 2022 6 66
[9]
Canova F and Ciccarelli MEstimating multicountry VAR modelsInt. Econ. Rev.200950929-959https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2354.2009.00554.x
[10]
Canova F and Ciccarelli M Panel vector autoregressive models: a survey Adv. Econom. 2013 31 66
[11]
Castillo I and van der Vaart A Needles and Straw in a Haystack: posterior concentration for possibly sparse sequences Ann. Stat. 2012 40 2069-2101
[12]
Chen EY and Fan J Statistical inference for high-dimensional matrix-variate factor models J. Am. Stat. Assoc. 2021 66 1-18
[13]
Chen L and Huang JZ Sparse reduced-rank regression with covariance estimation Stat. Comput. 2016 26 461-470
[14]
Chen RHX and Yang D Autoregressive models for matrix-valued time series J. Econom. 2021 222 539-560
[15]
Chen R, Yang D, and Zhang C-H Factor models for high-dimensional tensor time series J. Am. Stat. Assoc. 2022 117 94-116
[16]
Cichocki A Fundamental tensor operations for large-scale data analysis using tensor network formats Multidimens. Syst. Signal Process. 2018 29 921-960
[17]
Forni M, Hallin M, Lippi M, and Reichlin L The generalized dynamic factor model J. Am. Stat. Assoc. 2005 100 830-840
[18]
Gao Z and Tsay RS A two-way transformed factor model for matrix-variate time series Econom. Stat. 2021 6 66
[19]
Gefang D Bayesian doubly adaptive elastic-net lasso for VAR shrinkage Int. J. Forecast. 2014 30 1-11 https://www.sciencedirect.com/science/article/pii/S0169207013000770
[20]
George EI and McCulloch RE Variable selection via Gibbs sampling J. Am. Stat. Assoc. 1993 88 881-889
[21]
George EI and McCulloch RE Approaches for Bayesian variable selection Stat. Sin. 1997 66 339-373
[22]
George EI, Sun D, and Ni S Bayesian stochastic search for VAR model restrictions J. Econom. 2008 142 553-580
[23]
Geyer, C.J.: Computation for the Introduction to MCMC Chapter of Handbook of Markov chain Monte Carlo (2010)
[24]
Gong L and Flegal JM A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo J. Comput. Graph. Stat. 2016 25 684-700
[25]
Gupta A and Nagar DK Matrix Variate Distributions 1999 London Chapman & Hall/CRC
[26]
Hoff PD Separable covariance arrays via the Tucker product, with applications to multivariate relational data Bayesian Anal. 2011 6 179-196
[27]
Hoff PD Multilinear tensor regression for longitudinal relational data Ann. Appl. Stat. 2015 9 1169-1193
[28]
Jones GL and Qin Q Markov chain Monte Carlo in practice Annu. Rev. Stat. Appl. 2022 9 557-578
[29]
Kock A and Callot L Oracle inequalities for high dimensional vector autoregressions J. Econom. 2015 186 325-344
[30]
Kolda TG and Bader BW Tensor decompositions and applications SIAM Rev. 2009 51 455-500
[31]
Koop G and Korobilis D Model uncertainty in panel vector autoregressive models Eur. Econ. Rev. 2016 81 115-131
[32]
Koop G, Pesaran M, and Potter SM Impulse response analysis in nonlinear multivariate models J. Econom. 1996 74 119-147 https://www.sciencedirect.com/science/article/pii/0304407695017534
[33]
Korobilis D Prior selection for panel vector autoregressions Comput. Stat. Data Anal. 2016 101 110-120 https://www.sciencedirect.com/science/article/pii/S0167947316300275
[34]
Korobilis D High-dimensional macroeconomic forecasting using message passing algorithms J. Bus. Econ. Stat. 2021 39 493-504
[35]
Lam C, Yao Q, and Bathia N Estimation of latent factors for high-dimensional time series Biometrika 2011 98 901-918
[36]
Lanne M and Nyberg HGeneralized forecast error variance decomposition for linear and nonlinear multivariate modelsOxf. Bull. Econ. Stat.201678595-603https://onlinelibrary.wiley.com/doi/abs/10.1111/obes.12125
[37]
Lütkepohl H New Introduction to Multiple Time Series Analysis 2005 Berlin Springer
[38]
Meng X-L and Rubin DB Maximum likelihood estimation via the ECM algorithm: a general framework Biometrika 1993 80 267-278 http://www.jstor.org/stable/2337198
[39]
Nakajima J Time-varying parameter var model with stochastic volatility: an overview of methodology and empirical applications Monet. Econ. Stud. 2011 29 107-142
[40]
Ohlson M, Rauf Ahmad M, and von Rosen D The multilinear normal distribution: introduction and some basic properties J. Multivar. Anal. 2013 113 37-47 https://www.sciencedirect.com/science/article/pii/S0047259X11001047
[41]
Park T and Casella G The Bayesian Lasso J. Am. Stat. Assoc. 2008 103 681-686
[42]
Pesaran, M.H., Schuermann, T., Weiner, S.M.: Modeling regional interdependencies using a global error-correcting macroeconometric model. J. Bus. Econ. Stat. 22, 129–162 (2004).
[43]
Polson, N., Scott, J., Clarke, B., Severinski, C.: Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction, Vol. 9780199694587 (Oxford University Press, Oxford, 2012)
[44]
Ročková V and George EI Emvs: the EM approach to Bayesian variable selection J. Am. Stat. Assoc. 2014 109 828-846
[45]
Ročková V and George EI The spike-and-slab lasso J. Am. Stat. Assoc. 2018 113 431-444
[46]
Rockova V and McAlinn K Dynamic variable selection with spike-and-slab process priors Bayesian Anal. 2021 16 233-269
[47]
Rothman AJ, Levina E, and Zhu J Sparse multivariate regression with covariance estimation J. Comput. Graph. Stat. 2010 19 947-962
[48]
Samanta S, Khare K, and Michailidis G A generalized likelihood-based Bayesian approach for scalable joint regression and covariance selection in high dimensions Stat. Comput. 2022 32 47
[49]
Song, S., Bickel, P.: Large vector auto regressions. Papers, arxiv. org (2011)
[50]
Tucker LR Some mathematical notes on three-mode factor analysis Psychometrika 1966 51 279-311
[51]
Van Loan C The ubiquitous Kronecker product J Comput. Appl. Math. 2000 123 85-100
[52]
Van Loan, C.F., Pitsianis, N.: Approximation with Kronecker Products, pp. 293–314 (Springer, Dordrecht, 1993).
[53]
Vats D, Flegal JM, and Jones GL Multivariate output analysis for Markov chain Monte Carlo Biometrika 2019 106 321-337
[54]
Vats, D., Flegal, J.M. & Jones, G.L.: Monte Carlo Simulation: Are we there yet?, pp. 1–15. Wiley, New York (2021).
[55]
Wang T, Chen M, Zhao H, and Zhu L Estimating a sparse reduction for general regression in high dimensions Stat. Comput. 2018 28 33-46
[56]
Wang D, Liu X, and Chen R Factor models for matrix-valued high-dimensional time series J. Econom. 2019 208 231-248 https://www.sciencedirect.com/science/article/pii/S0304407618301787

Cited By

View all
  • (2024)Temporal clustering for accurate short-term load forecasting using Bayesian multiple linear regressionApplied Intelligence10.1007/s10489-024-05887-z55:1Online publication date: 25-Nov-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Statistics and Computing
Statistics and Computing  Volume 34, Issue 2
Apr 2024
579 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 11 March 2024
Accepted: 05 February 2024
Received: 10 August 2023

Author Tags

  1. Autoregressive models
  2. Bayesian estimation
  3. Matrix-valued time series
  4. Maximum a posteriori probability
  5. Stochastic search

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Temporal clustering for accurate short-term load forecasting using Bayesian multiple linear regressionApplied Intelligence10.1007/s10489-024-05887-z55:1Online publication date: 25-Nov-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media