Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Global Non-rigid Alignment of Surface Sequences

Published: 01 March 2013 Publication History

Abstract

This paper presents a general approach based on the shape similarity tree for non-sequential alignment across databases of multiple unstructured mesh sequences from non-rigid surface capture. The optimal shape similarity tree for non-rigid alignment is defined as the minimum spanning tree in shape similarity space. Non-sequential alignment based on the shape similarity tree minimises the total non-rigid deformation required to register all frames in a database into a consistent mesh structure with surfaces in correspondence. This allows alignment across multiple sequences of different motions, reduces drift in sequential alignment and is robust to rapid non-rigid motion. Evaluation is performed on three benchmark databases of 3D mesh sequences with a variety of complex human and cloth motion. Comparison with sequential alignment demonstrates reduced errors due to drift and improved robustness to large non-rigid deformation, together with global alignment across multiple sequences which is not possible with previous sequential approaches.

References

[1]
Ahmed, N., Theobalt, C., Roessl, C., Thrun, S., & Seidel, H.-P. (2008). Dense correspondence finding for parameterization-free animation reconstruction from video. In Conference on computer vision and pattern recognition.
[2]
Baran, I., Vlasic, D., Grinspun, E., & Popovic, J. (2009). Semantic deformation transfer. In Proc. ACM SIGGRAPH.
[3]
Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., & Gross, M. (2011). High-quality passive facial performance capture using anchor frames. In Proc. ACM SIGGRAPH.
[4]
Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(24), 509-522.
[5]
Botsch, M., & Sorkine, O. (2008). On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 14(1), 213-230.
[6]
Bradley, D., Heidrich, W., Popa, T., & Sheffer, A. (2010). High-resolution passive facial performance capture. In Proc. ACM SIGGRAPH.
[7]
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., & Boubekeur, T. (2008). Markerless garment capture. ACM Transactions on Graphics, 27(3), 99.
[8]
Bronstein, A., Bronstein, M., & Kimmel, R. (2007). Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Transactions on Visualization and Computer Graphics, 13(5), 902-913.
[9]
Budd, C., & Hilton, A. (2009). Skeleton driven volumetric Laplacian deformation. In European conference on visual media production.
[10]
Budd, C., Huang, P., & Hilton, A. (2011). Hierarchical shape matching for temporally consistent 3D video. In IEEE conf. 3D imaging, processing, visualisation and transmission (3DIMPVT).
[11]
Cagniart, C., Boyer, E., & Ilic, S. (2010a). Free-form mesh tracking: a patch-based approach. In Conference on computer vision and pattern recognition.
[12]
Cagniart, C., Boyer, E., & Ilic, S. (2010b). Probabilistic deformable surface tracking from multiple videos. In European conference on computer vision.
[13]
Carceroni, R., & Kutulakos, K. (2002). Multi-view scene capture by surfel sampling: from video streams to non-rigid 3D motion, shape and reflectance. International Journal of Computer Vision, 49(2-3), 175-214.
[14]
Carranza, J., Theobalt, C., Magnor, M., & Seidel, H.-P. (2003). Free-viewpoint video of human actors. In Proceedings ACM SIGGRAPH (Vol. 22(3), pp. 569-577).
[15]
de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., & Thrun, S. (2008). Performance capture from sparse multiview video. In Proceedings of the ACM SIGGRAPH (Vol. 27(3)).
[16]
Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285-1295.
[17]
Enqvist, O., Kahl, F., & Olsson, C. (2011). Non-sequential structure from motion. In IEEE workshop on omnidirectional vision, camera networks and non-classical camera.
[18]
Furukawa, Y., & Ponce, J. (2010). Dense 3D motion capture for human faces. In Conference on computer vision and pattern recognition.
[19]
Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose oblivious shape signature. IEEE Transactions on Visualization and Computer Graphics, 13(2), 261-271.
[20]
Gatzke, T., Grimm, C., Garland, M., & Zelinka, S. (2005). Curvature maps for local shape comparison. In Shape modelling and applications.
[21]
Gherhadi, R., Toldo, R., Farenzena, M., & Fusiello, A. (2010). Samantha: towards automatic image-based model acquisition. In Proceedings of the 7th European conference on visual media production (CVMP 2010).
[22]
Huang, P., Budd, C., & Hilton, A. (2011). Global temporal registration of multiple non-rigid surface sequences. In Conference on computer vision and pattern recognition.
[23]
Huang, P., Hilton, A., & Starck, J. (2009). Human motion synthesis from 3D video. In IEEE int. conf. on computer vision and pattern recognition, CVPR.
[24]
Huang, P., Hilton, A., & Starck, J. (2010). Shape similarity for 3D video sequences of people. International Journal of Computer Vision, 89(2-3), 362-381.
[25]
Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., & Ramani, K. (2005). Three dimensional shape searching: state-of-the-art review and future trends. Computer Aided Design, 37(5).
[26]
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50.
[27]
Liing, H., & Jacobs, D. (2005). Deformation invariant image matching. In IEEE int. conf. on computer vision (pp. 1466-1473).
[28]
Lowe, D. (2004). Distinctive image features for scale invariant key-points. International Journal of Computer Vision, 60(2), 91-110.
[29]
McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image processing. Medical Image Analysis, 1(2), 91-108.
[30]
Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615-1630.
[31]
Moeslund, T., Hilton, A., & Kruger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2-3), 90-127.
[32]
Moeslund, T., Hilton, A., Kruger, V., & Sigal, L. E. (2011). Visual analysis of humans: looking at people. Berlin: Springer.
[33]
Neumann, J., & Aloimonos, Y. (2002). Spatio-temporal stereo using multi-resolution subdivision surfaces. International Journal of Computer Vision, 47(1-3), 181-193.
[34]
Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. International Journal of Computer Vision, 72(2), 179-193.
[35]
Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technology Journal, 36, 1389-1401.
[36]
Pritchard, D., & Heidrich, W. (2003). Cloth motion capture. Computer Graphics Forum, 22(3), 263-271.
[37]
Salzmann, M., Pilet, J., Ilic, S., & Fua, P. (2007). Surface deformation models for non-rigid 3D shape recovery. In IEEE trans. Pattern analysis and machine intelligence.
[38]
Scholz, V., Stich, T., Kechkeisen, M., Wacker, M., & Magnor, M. (2005). Garment motion capture using color-coded patterns. Computer Graphics Forum, 24(3), 439-448.
[39]
Sorkine, O. (2006). Differential representations for mesh processing. Computer Graphics Forum, 25(4).
[40]
Starck, J., & Hilton, A. (2003). Model-based multiple view reconstruction of people. In IEEE international conference on computer vision (pp. 915-922).
[41]
Starck, J., & Hilton, A. (2005). Spherical matching for temporal correspondence of non-rigid surfaces. In IEEE int. conf. computer vision (pp. 1387-1394).
[42]
Starck, J., & Hilton, A. (2007a). Correspondence labelling for wide-timeframe free-form surface matching. In IEEE int. conf. on computer vision.
[43]
Starck, J., & Hilton, A. (2007b). Surface capture for performance-based animation. IEEE Computer Graphics and Applications, 27(3), 21-31.
[44]
Stoll, C., Gall, J., de Aguiar, E., Thrun, S., & Theobalt, C. (2010). Video-based reconstruction of animatable human characters. In ACM SIGGRAPH ASIA.
[45]
Sumner, R., & Popovic, J. (2004). Deformation transfer for triangle meshes. In Proc. ACM SIGGRAPH.
[46]
Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., & Seidel, H.-P. (2011). Animation cartography--intrinsic reconstruction of shape and motion. ACM Transaction on Graphics.
[47]
Tung, T., & Matsuyama, T. (2010). Dynamic surface matching by geodesic mapping for animation transfer. In Conference on computer vision and pattern recognition.
[48]
Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene flow. IEEE Transactions Pattern Analysis and Machine Intelligence, 27(3).
[49]
Vlasic, D., Baran, I., Matusik, W., & Popovic, J. (2008). Articulated mesh animation from multi-view silhouettes. In Proc. ACM SIGGRAPH.
[50]
Wand, M., Adams, B., Ovsianikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., & Schilling, A. (2009). Efficient reconstruction of non-rigid shape and motion from real-time 3D scanner data. ACM Transaction on Graphics, 28(2).
[51]
White, R., Crane, K., & Forsythe, D. (2007). Capturing and animating occluded cloth. In Proc. ACM SIGGRAPH (Vol. 26(3), p. 34).
[52]
Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., & Paragios, N. (2010). Dense non-rigid surface registration using high-order graph matching. In Conference on computer vision and pattern recognition.
[53]
Zhang, L., Snavely, N., Curless, B., & Seitz, S. (2004). Spacetime faces: high resolution capture for modelling and animation. In Proc. ACM SIGGRAPH (pp. 546-556).

Cited By

View all
  • (2023)Global Optimisation for Improved Volume Tracking of Time-Varying MeshesComputational Science – ICCS 202310.1007/978-3-031-36027-5_9(113-127)Online publication date: 3-Jul-2023
  • (2020)Exploring the Use of Skeletal Tracking for Cheaper Motion Graphs and On-Set Decision Making in Free-Viewpoint Video ProductionProceedings of the 17th ACM SIGGRAPH European Conference on Visual Media Production10.1145/3429341.3429353(1-10)Online publication date: 7-Dec-2020
  • (2019)Progressive Non-rigid Registration of Temporal Mesh SequencesProceedings of the 16th ACM SIGGRAPH European Conference on Visual Media Production10.1145/3359998.3369411(1-10)Online publication date: 17-Dec-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Computer Vision
International Journal of Computer Vision  Volume 102, Issue 1-3
March 2013
307 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 March 2013

Author Tags

  1. 3D mesh sequences
  2. 3D video
  3. 4D modelling
  4. Non-rigid surface alignment
  5. Non-sequential tracking
  6. Surface tracking

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Global Optimisation for Improved Volume Tracking of Time-Varying MeshesComputational Science – ICCS 202310.1007/978-3-031-36027-5_9(113-127)Online publication date: 3-Jul-2023
  • (2020)Exploring the Use of Skeletal Tracking for Cheaper Motion Graphs and On-Set Decision Making in Free-Viewpoint Video ProductionProceedings of the 17th ACM SIGGRAPH European Conference on Visual Media Production10.1145/3429341.3429353(1-10)Online publication date: 7-Dec-2020
  • (2019)Progressive Non-rigid Registration of Temporal Mesh SequencesProceedings of the 16th ACM SIGGRAPH European Conference on Visual Media Production10.1145/3359998.3369411(1-10)Online publication date: 17-Dec-2019
  • (2018)Learning Nonlinear Soft-Tissue Dynamics for Interactive AvatarsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32031871:1(1-15)Online publication date: 25-Jul-2018
  • (2018)Volumetric Performance Capture from Minimal Camera ViewpointsComputer Vision – ECCV 201810.1007/978-3-030-01252-6_35(591-607)Online publication date: 8-Sep-2018
  • (2017)Spatiotemporal atlas parameterization for evolving meshesACM Transactions on Graphics10.1145/3072959.307367936:4(1-12)Online publication date: 20-Jul-2017
  • (2017)Multi-view Performance Capture of Surface DetailsInternational Journal of Computer Vision10.1007/s11263-016-0979-1124:1(96-113)Online publication date: 1-Aug-2017
  • (2016)Example-based body model optimization and skinningProceedings of the 37th Annual Conference of the European Association for Computer Graphics: Short Papers10.5555/3059107.3059110(5-8)Online publication date: 9-May-2016
  • (2016)Rapid Photorealistic Blendshape Modeling from RGB-D SensorsProceedings of the 29th International Conference on Computer Animation and Social Agents10.1145/2915926.2915936(121-129)Online publication date: 23-May-2016
  • (2016)Recent Trends, Applications, and Perspectives in 3D Shape Similarity AssessmentComputer Graphics Forum10.1111/cgf.1273435:6(87-119)Online publication date: 1-Sep-2016
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media