Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Klein-Bottle-Based Dictionary for Texture Representation

Published: 01 March 2014 Publication History

Abstract

A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small $$n\times n$$ n n high-contrast patches from natural images in gray-scale accumulate with high density around a surface $$\fancyscript{K}\subset {\mathbb {R}}^{n^2}$$ K R n 2 with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1---12, 2008 ), we present in this paper a novel framework for the estimation and representation of distributions around $$\fancyscript{K}$$ K , of patches from texture images. More specifically, we show that most $$n\times n$$ n n patches from a given image can be projected onto $$\fancyscript{K}$$ K yielding a finite sample $$S\subset \fancyscript{K}$$ S K , whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from $$S$$ S . We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.

References

[1]
Aherne, F. J., Thacker, N.A., & Rockett, P. I. (1998). The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika, 34 (4), 363-368.
[2]
Bell, A. J., & Sejnowski, T. J. (1997). The "independent components" of natural scenes are edge filters. Vision Research, 37 (23), 3327.
[3]
Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is "nearest neighbor" meaningful? Database Theory-ICDT'99 (pp. 217-235).
[4]
Broadhurst, R. E. (2005). Statistical estimation of histogram variation for texture classification. In Proc. Intl. Workshop on texture analysis and synthesis . (pp. 25-30).
[5]
Brodatz, P. (1966). Textures: A photographic album for artists and designers (Vol. 66). New York: Dover.
[6]
Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46 (2), 255.
[7]
Carlsson, G., Ishkhanov, T., De Silva, V., & Zomorodian, A. (2008). On the local behavior of spaces of natural images. International Journal of Computer Vision, 76 (1), 1-12.
[8]
Crosier, M., & Griffin, L. D. (2010). Using basic image features for texture classification. International Journal of Computer Vision, 88 (3), 447-460.
[9]
Dana, K. J., Van Ginneken, B., Nayar, S. K., & Koenderink, J. J. (1999). Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG), 18 (1), 1-34.
[10]
De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Persistent cohomology and circular coordinates. Discrete and Computational Geometry, 45 (4), 737-759.
[11]
De Wit, T. D., & Floriani, E. (1998). Estimating probability densities from short samples: A parametric maximum likelihood approach. Physical Review E, 58 (4), 5115.
[12]
Edelman, A., & Murakami, H. (1995). Polynomial roots from companion matrix eigenvalues. Mathematics of Computation, 64 (210), 763-776.
[13]
Franzoni, G. (2012). The klein bottle: Variations on a theme. Notices of the AMS, 59 (8), 1094-1099.
[14]
Lewis, D. (2005). Feature classes for 1D, 2nd order image structure arise from natural image maximum likelihood statistics. Network, 16 (2-3), 301-320.
[15]
Griffin, L. D. (2007). The second order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (8), 1355-1366.
[16]
Harris, C. & Stephens, M. (1988) A combined corner and edge detector. In Proc. of Fourth Alvey Vision Conference . (pp. 147-151).
[17]
Hatcher, A. (2002). Algebraic topology . Cambridge: Cambridge University Press.
[18]
Hayman, E., Caputo, B., Fritz, M., & Eklundh, J. O. (2004). On the significance of real-world conditions for material classification. Computer Vision ECCV, 3024 , 253-266.
[19]
Hubel, D. H., & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology, 148 (3), 574- 591.
[20]
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195 (1), 215-243.
[21]
Jurie, F. and Triggs, B. (2005). Creating efficient codebooks for visual recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, IEEE . (Vol. 1, pp. 604-610).
[22]
Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50 (5), 363-370.
[23]
Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (8), 1265-1278.
[24]
Lee, A. B., Pedersen, K. S., & Mumford, D. (2003). The nonlinear statistics of high-contrast patches in natural images. International Journal of Computer Vision, 54 (1), 83-103.
[25]
Leung, T., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43 (1), 29-44.
[26]
Moler, C. (1991). Cleve's corner: Roots-of polynomials, that is. The MathWorks Newsletter, 5 (1), 8-9.
[27]
Pedersen, Kim S and Lee, Ann B. (2002). Toward a full probability model of edges in natural images. In Computer Vision-ECCV 2002 , Springer (pp. 328-342).
[28]
Reed, M., & Simon, B. (1972). Methods of modern mathematical physics: Functional analysis (Vol. 1). New York: Academic Press.
[29]
Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40 (2), 99-121.
[30]
Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). London: Chapman & Hall.
[31]
vanHateren, J.H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. In Proceedings of the Royal Society of London. Series B: Biological Sciences , (Vol. 265(1394) pp. 359-366).
[32]
Varma, M. and Ray, D. (2007). Learning the discriminative power-invariance trade-off. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE . (pp. 1-8).
[33]
Varma, M., & Zisserman, A. (2004). Unifying statistical texture classification frameworks. Image and Vision Computing, 22 (14), 1175- 1183.
[34]
Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62 (1), 61-81.
[35]
Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (11), 2032-2047.
[36]
Watson, G. S. (1969). Density estimation by orthogonal series. The Annals of Mathematical Statistics, 40 (4), 1496-1498.
[37]
Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for largemargin nearest neighbor classification. The Journal of Machine Learning Research, 10 , 207-244.
[38]
Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73 (2), 213-238.

Cited By

View all
  1. A Klein-Bottle-Based Dictionary for Texture Representation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image International Journal of Computer Vision
      International Journal of Computer Vision  Volume 107, Issue 1
      March 2014
      97 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 March 2014

      Author Tags

      1. Density estimation
      2. Fourier coefficients
      3. Klein bottle
      4. Patch distribution
      5. Texture classification
      6. Texture representation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 04 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Persistence Curves: A canonical framework for summarizing persistence diagramsAdvances in Computational Mathematics10.1007/s10444-021-09893-448:1Online publication date: 1-Feb-2022
      • (2021)A Comprehensive Taxonomy of Dynamic Texture RepresentationACM Computing Surveys10.1145/348789255:1(1-39)Online publication date: 23-Nov-2021
      • (2019)Tropical Coordinates on the Space of Persistence BarcodesFoundations of Computational Mathematics10.1007/s10208-018-9379-y19:1(101-129)Online publication date: 1-Feb-2019
      • (2019)Optimising the Topological Information of the $$A_\infty $$A?-Persistence GroupsDiscrete & Computational Geometry10.1007/s00454-019-00094-x62:1(29-54)Online publication date: 1-Jul-2019
      • (2018)Generalization of the Weighted Nonlocal Laplacian in Low Dimensional Manifold ModelJournal of Scientific Computing10.1007/s10915-017-0549-x75:2(638-656)Online publication date: 1-May-2018
      • (2018)Multiscale Projective Coordinates via Persistent Cohomology of Sparse FiltrationsDiscrete & Computational Geometry10.1007/s00454-017-9927-259:1(175-225)Online publication date: 1-Jan-2018
      • (2018)Frequency Analysis of Topological Projections onto Klein Bottle for Texture CharacterizationProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications10.1007/978-3-030-13469-3_40(342-350)Online publication date: 19-Nov-2018
      • (2017)An efficient representation for filtrations of simplicial complexesProceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3039686.3039865(2705-2720)Online publication date: 16-Jan-2017
      • (2017)Texture characterization via deterministic walks direction histogram applied to a complex network-based image transformationPattern Recognition Letters10.1016/j.patrec.2017.07.01397:C(77-83)Online publication date: 1-Oct-2017
      • (2015)Approximating persistent homology in Euclidean space through collapsesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-014-0247-y26:1-2(73-101)Online publication date: 1-Mar-2015
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media