Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Computation-skip Error Mitigation Scheme for Power Supply Voltage Scaling in Recursive Applications

Published: 01 September 2016 Publication History

Abstract

Aggressive power supply voltage Vdd scaling is widely utilized to exploit the design margin introduced by the process, voltage and environment variations. However, scaling beyond the critical Vdd results to numerous setup timing errors, and hence to an unacceptable output quality. In this paper, we propose computation-skip (CS) scheme to mitigate setup timing errors, for recursive digital signal processors with a fixed cycles per instruction (CPI). A coordinate rotation digital computer (CORDIC) with the proposed CS scheme still functions when scaling beyond the error-free voltage. It enables better-than-worst-case design constraint and achieves 1.82 X energy saving w.r.t. nominal Vdd condition, another 1.49 X energy saving without quality degradation, and another 1.09 X energy saving when sacrificing 8.35 dB output quality.

References

[1]
Abdallah, R., & Shanbhag, N. (2009). Error-resilient low-power viterbi decoder architectures. IEEE Transactions on Signal Processing, 57(12), 4906---4917.
[2]
Bhushan, M., Ketchen, M.B., Polonsky, S., & Gattiker, A. (2006). Ring oscillator based technique for measuring variability statistics. In IEEE Int. Conf., Microelectron. Test Struct. 2006. ICMTS 2006. pp. 87---92.
[3]
Bowman, K.A., Tschanz, J.W., Kim, N.S., Lee, J.C., Wilkerson, C.B., Lu, S.L., Karnik, T., & De, V.K. (2009). Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE Journal on Solid-State Circuits, 44(1), 49---63.
[4]
Calhoun, B.H., & Chandrakasan, A.P. (2004). Standby power reduction using dynamic voltage scaling and canary flip-flop structures. IEEE J on Solid-State Circuits, 39(9), 1504---1511.
[5]
Choudhury, M., Chandra, V., Mohanram, K., & Aitken, R. (2010). TIMBER: Time borrowing and error relaying for online timing error resilience. In Des. Autom. Test Eur. Conf. Exhib. (DATE), 2010, pp. 1554---1559.
[6]
De Man, H. (2005). Ambient intelligence: gigascale dreams and nanoscale realities. In Solid-State Circuits Conf. 2005. Dig. Tech. Pap. ISSCC. 2005 IEEE Int., pp. 29---35. IEEE.
[7]
Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin, T., Flautner, K., & Mudge, T. (2003). Razor: a low-power pipeline based on circuit-level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annu. IEEE/ACM Int. Symp., pp. 7---18.
[8]
Fojtik, M., Fick, D., Kim, Y., Pinckney, N., Harris, D.M., Blaauw, D., & Sylvester, D. (2013). Bubble Razor: Eliminating timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architecturally independent error detection and correction. IEEE Journal on Solid-State Circuits, 48(1), 66---81.
[9]
Hegde, R., & Shanbhag, N.R. (1999). Energy-efficient signal processing via algorithmic noise-tolerance. In Proceedings 1999 Int. Symp., Low Power Electron. Des. 1999. pp. 30---35.
[10]
Huang, Y., Li, M., Li, C., Debacker, P., & Perre, L.V.D. (2014). Computation-Skip Error Resilient Scheme for Recursive CORDIC. In 2014 SIPS, Work. Signal Process. Syst. Press.
[11]
Kao, J.T., Miyazaki, M., & Chandrakasan, A.P. (2002). A 175-MV multiply-accumulate unit using an adaptive supply voltage and body bias architecture. IEEE Journal on Solid-State Circuits, 37(11), 1545---1554.
[12]
Kim, E.P., & Shanbhag, N.R. (2012). Energy-efficient LDPC decoders based on error-resiliency. 2012 IEEE Workshop on Signal Processing System, 149---154.
[13]
Kuhn, K.J. (2010). CMOS transistor scaling past 32nm and implications on variation. In 2010 IEEE/SEMI, Adv. Semicond. Manuf. Conf. (ASMC), pp. 241---246.
[14]
Li, C., Bourdoux, A., Verhelst, M., Huang, Y., Li, M., Van Der Perre, L., & Pollin, S. (2015). lt;30 mW rectangular-to-polar conversion processor in 802.11ad polar transmitter. In 2015 IEEE Int. Conf., Acoust. Speech Signal Process. (ICASSP), pp. 1022---1026.
[15]
Li, C., Li, M., Khalaf, K., Bourdoux, A., Verhelst, M., Ingels, M., Wambacq, P., Craninckx, J., Van Der Perre, L., & Pollin, S. (2015). Opportunities and challenges of digital signal processing in deeply technology-scaled transceivers. Journal of Signal Processing System, 78(1), 5---19.
[16]
Shin, I., Kim, J.j., Lin, Y.s., & Shin, Y. (2013). Architecture with 1-Cycle Timing Error for Low Voltage Operations Correction for Low Voltage Operations. In 2013 IEEE Int. Symp., Low Power Electron. Des. (ISLPED), vol. 3, pp. 199---204.

Cited By

View all
  • (2018)Efficient DSP and Circuit Architectures for Massive MIMOIEEE Transactions on Signal Processing10.1109/TSP.2018.285819066:18(4717-4736)Online publication date: 1-Sep-2018
  • (2017)Massive MIMO processing at the semiconductor edge: Exploiting the system and circuit margins for power savings2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP.2017.7952802(3474-3478)Online publication date: 5-Mar-2017
  1. Computation-skip Error Mitigation Scheme for Power Supply Voltage Scaling in Recursive Applications

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of Signal Processing Systems
    Journal of Signal Processing Systems  Volume 84, Issue 3
    September 2016
    148 pages
    ISSN:1939-8018
    EISSN:1939-8115
    Issue’s Table of Contents

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 September 2016

    Author Tags

    1. CORDIC
    2. Error mitigation
    3. Process variation
    4. Voltage scaling

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Efficient DSP and Circuit Architectures for Massive MIMOIEEE Transactions on Signal Processing10.1109/TSP.2018.285819066:18(4717-4736)Online publication date: 1-Sep-2018
    • (2017)Massive MIMO processing at the semiconductor edge: Exploiting the system and circuit margins for power savings2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP.2017.7952802(3474-3478)Online publication date: 5-Mar-2017

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media