Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Energy-Efficient Digital Front-End Processor for 60 GHz Polar Transmitter

Published: 01 May 2018 Publication History

Abstract

This paper presents an energy-efficient digital front-end processor for digital-intensive polar transmitter architecture working on 60 GHz band in standard 28nm CMOS process. This avoids modulating the supply and also eliminates the need of an additional RF limiter and AM detection circuits in the traditional analog-centric polar transmitter architecture. The design challenges on the digital signal processing (DSP) front-end are analyzed and tackled. The systematic optimizations are first explored to minimize the design requirements on the DSP front-end. A pulse shaping filter is designed to shape the frequency spectrum of the quadrature signals so that the signal at the output of the filter is compliant with the spectrum mask requirements. Instead of using computation-intensive raised cosine filter for the pulse shaping, we use poly-phase Cascaded Integrator-Comb (CIC) filter to shape the spectrum. Parallel rotation and vectoring COordinate Rotation DIgital Computers (CORDICs) are designed to perform rectangular-to-polar conversion. Furthermore, a pre-distortion circuit based on look-up table (LUT) is designed to compensate the power amplifier (PA) nonlinearities. Taylor's approximation is explored to avoid the complex trigonometric computation in the pre-distortion. Finally, an efficient latch-based pipeline is studied to provide the required 7.04 Gsps throughput with less than 60 mW. The synthesis results compare favorably with previously reported architectures.

References

[1]
Association and Others, I.S. (2002). IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical La. IEEE.
[2]
Khalaf, K., Vidojkovic, V., Vaesen, K., Libois, M., Mangraviti, G., Szortyka, V., Li, C., Verbruggen, B., Ingels, M., Bourdoux, A., Soens, C., Thillo, W. V., Long, J. R., & Wambacq, P. (2016). Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication. IEEE J. Solid-State Circuits, PP(99), 1---14.
[3]
Chan, W. L., & Long, J. R. (2010). A 60-GHz band 2 2 phased-array transmitter in 65-nm CMOS. IEEE J. Solid-State Circuits, 45(12), 2682---2695.
[4]
Nariman, M., Shirinfar, F., Pamarti, S., Rofougaran, M., Rofougaran, R., & De Flaviis, F. A compact millimeter-wave energy transmission system for wireless applications. In Radio Freq. Integr. Circuits Symp. (RFIC), 2013 IEEE. IEEE, 2013, pp. 407---410.
[5]
Khalaf, K., Vidojkovic, V., Vaesen, K., Long, J. R., Van Thillo, W., & Wambacq, P. A digitally modulated 60GHz polar transmitter in 40nm cmos. In Radio Freq. Integr. Circuits Symp. 2014 IEEE. IEEE, 2014, pp. 159---162.
[6]
Vidojkovic, V., Szortyka, V., Khalaf, K., Mangraviti, G., Brebels, S., Van Thillo, W., Vaesen, K., Parvais, B., Issakov, V., Libois, M., & Others. A low-power radio chipset in 40nm lp cmos with beamforming for 60ghz high-data-rate wireless communication. In 2013 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap., 2013.
[7]
Volder, J. E. (1959). The CORDIC trigonometric computing technique. Electron Comput. IRE Trans., 3, 330---334.
[8]
Li, C., Bourdoux, A., Verhelst, M., Huang, Y., Li, M., Van Der Perre, L., & Pollin, S. 30 mW rectangular-to-polar conversion processor in 802.11ad polar transmitter.
[9]
Li, C., Li, M., Khalaf, K., Bourdoux, A., Verhelst, M., Ingels, M., Wambacq, P., Craninckx, J., Van Der Perre, L., & Pollin, S. (2015). Opportunities and Challenges of Digital Signal Processing in Deeply Technology-Scaled Transceivers. J. Signal Process. Syst., 78(1), 5---19.
[10]
Losada, R. A., & Lyons, R. (2006). Reducing CIC filter complexity. Signal Process. Mag. IEEE, 23(4), 124---126.
[11]
Aboushady, H., Dumonteix, Y., Louërat, M.-M., & Mehrez, H. Efficient polyphase decomposition of comb decimation filters in sigmadelta analog-to-digital converters. In Circuits Syst. 2000. Proc. 43rd IEEE Midwest Symp., vol. 1. IEEE, 2000, pp. 432---435.
[12]
Koc, C. K., & Hung, C. Y. (1990). Multi-operand modulo addition using carry save adders. Electron. Lett., 26(6), 361---363.
[13]
Gustafsson, O., Dempster, A. G., & Wanhammar, L. Multiplier blocks using carry-save adders. In Circuits Syst. 2004. ISCAS '04. Proc. 2004 Int. Symp., vol. 2, 2004, pp. I---473---6, Vol. 2.
[14]
Markovié, D., & Brodersen, R. W. (2012). DSP Architecture Design Essentials: Springer Science & Business Media.
[15]
Huang, Y., Kapoor, A., Rutten, R., & de Gyvez, J.P. (2014). A 13 bits 4.096 GHz 45 nm CMOS digital decimation filter chain with Carry-Save format numbers. Microprocess. Microsyst.
[16]
Umemoto, Y., Nii, K., Ishikawa, J., Yabuuchi, M., Okamoto, K., Tsukamoto, Y., Tanaka, S., Tanaka, K., Matsumura, T., Mori, K., & Others (2014). 28 nm 50% power-reducing contacted mask read only memory macro with 0.72-ns read access time using 2T pair bitcell and dynamic column source bias control technique. Very Large Scale Integr. Syst. IEEE Trans., 22(3), 575---584.
[17]
Lee, B., & Burgess, N. Some results on Taylor-series function approximation on FPGA. In Signals, Syst. Comput. 2004. Conf. Rec. Thirty-Seventh Asilomar Conf., vol. 2. IEEE, 2003, pp. 2198---2202.
[18]
Hwang, D. D., Fu, D., & A. N. Willson Jr (2003). A 400-MHz processor for the conversion of rectangular to polar coordinates in 0.25-um CMOS. Solid-State Circuits IEEE J., 38(10), 1771---1775.
[19]
Strollo, A., De Caro, D., & Petra, N. (2008). A 430 MHz, 280 mW Processor for the Conversion of Cartesian to Polar Coordinates in 0.25 CMOS. Solid-State Circuits IEEE J., 43(11), 2503---2513.
[20]
Muller, J., Stefanelli, B., Frappe, A., Ye, L., Cathelin, A., Niknejad, A., & Kaiser, A. (2012). A 7-Bit 18th Order 9.6 GS/s FIR Up-Sampling Filter for High Data Rate 60-GHz Wireless Transmitters. IEEE J. Solid-State Circuits, 47(7), 1743---1756.
[21]
Mehta, J., Staszewski, R. B., Eliezer, O., Rezeq, S., Waheed, K., Entezari, M., Feygin, G., Vemulapalli, S., Zoicas, V., Hung, C.-M., & Others. A 0.8 mm 2 all-digital SAW-less polar transmitter in 65nm EDGE SoC. In Solid-State Circuits Conf. Dig. Tech. Pap. (ISSCC), 2010 IEEE Int. IEEE, 2010, pp. 58---59.

Cited By

View all
  • (2024)Digital Polar Transmitters for Massive MIMO: Sum-Rate and Power Efficiency AnalysisIEEE Transactions on Wireless Communications10.1109/TWC.2023.328215823:1(789-805)Online publication date: 1-Jan-2024
  1. Energy-Efficient Digital Front-End Processor for 60 GHz Polar Transmitter

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of Signal Processing Systems
      Journal of Signal Processing Systems  Volume 90, Issue 5
      May 2018
      122 pages
      ISSN:1939-8018
      EISSN:1939-8115
      Issue’s Table of Contents

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 May 2018

      Author Tags

      1. Digital front-end
      2. Digital pre-distortion
      3. MM-wave
      4. Polar transmitter
      5. Signal processing

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Digital Polar Transmitters for Massive MIMO: Sum-Rate and Power Efficiency AnalysisIEEE Transactions on Wireless Communications10.1109/TWC.2023.328215823:1(789-805)Online publication date: 1-Jan-2024

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media