Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Uni-MUMAC: a unified down/up-link MU-MIMO MAC protocol for IEEE 802.11ac WLANs

Published: 01 July 2015 Publication History

Abstract

Due to the dominance of the downlink traffic in Wireless Local Area Networks (WLANs), a large number of previous research efforts have been put to enhance the downlink transmission, namely, from the Access Point (AP) to stations (STAs). The downlink Multi-User Multiple-Input Multiple-Output (MU-MIMO) technique, supported by the latest IEEE amendment-802.11ac, is considered as one of the key enhancements leading WLANs to the Gigabit era. However, as cloud uploading services, Peer-to-Peer and telepresence applications get popular, the need for higher uplink capacity becomes inevitable. In this paper, a unified down/up-link Medium Access Control (MAC) protocol called Uni-MUMAC is proposed to enhance the performance of IEEE 802.11ac WLANs by exploring the multi-user spatial multiplexing technique. Specifically, in the downlink, we implement an IEEE 802.11ac-compliant MU-MIMO transmission scheme to allow the AP to simultaneously send frames to a group of STAs. In the uplink, we extend the traditional one round channel access contention to two rounds, which coordinate multiple STAs to transmit frames to the AP simultaneously. 2-nd round Contention Window $$(CW_{\rm 2nd})$$(CW2nd), a parameter that makes the length of the 2-nd contention round elastic according to the traffic condition, is introduced. Uni-MUMAC is evaluated through simulations in saturated and non-saturated conditions when both downlink and uplink traffic are present in the system. We also propose an analytic saturation model to validate the simulation results. By properly setting $$CW_{\rm 2nd}$$CW2nd and other parameters, Uni-MUMAC is compared to a prominent multi-user transmission scheme in the literature. The results exhibit that Uni-MUMAC not only performs well in the downlink-dominant scenario, but it is also able to balance both the downlink and uplink throughput in the emerging uplink bandwidth-hungry scenario.

References

[1]
Cisco. (2012). 802.11ac: The fifth generation of Wi-Fi. Cisco White Paper, pp. 1---25.
[2]
Kihl, M., Odling, P., Lagerstedt, C., & Aurelius, A. (2010). Traffic analysis and characterization of internet user behavior. ICUMT, pp. 224---231.
[3]
Wamser, F., Pries, R., Staehle, D., Heck, K., & Tran-Gia, P. (2011). Traffic characterization of a residential wireless internet access. Telecommunication Systems, 48(1---2), 5---17.
[4]
Cisco. (2013). Cisco Visual Networking Index: Global mobile data traffic forecast update, 2012---2017. Cisco White Paper, pp. 1---34.
[5]
IEEE. (2009). IEEE standard for information technology-LAN/MAN-Part 11: Wireless LAN medium access control and physical layer specifications-mmendment: Enhancements for higher throughput. IEEE 802.11n, pp. 1---565.
[6]
IEEE. (2013). IEEE standard for information technology-telecommunications and information exchange between systems-Part 11-mmendment 4: Enhancements for very high throughput for operation in bands below 6 GHz. IEEE 802.11ac, pp. 1---425.
[7]
Liao, R., Bellalta, B., Cano, C., & Miquel, M. (2011). DCF/DSDMA: Enhanced DCF with SDMA downlink transmissions for WLANs. BCFIC, pp. 96---102.
[8]
Liao, R., Bellalta, B., & Miquel, M. DCF/USDMA: Enhanced DCF for uplink SDMA transmissions in WLANs. IWCMC, pp. 263---268.
[9]
Cai, L. X., Shan, H., Zhuang, W., Shen, X., Mark, J. W., & Wang, Z. (2008). A distributed multi-user MIMO MAC protocol for wireless local area networks. GLOBECOM, pp. 4976---4980.
[10]
Kartsakli, E., Zorba, N., Alonso, L., & Verikoukis, C. V. (2009). Multiuser MAC protocols for 802.11n wireless networks. ICC, pp. 1---5.
[11]
Gong, M. X., Perahia, E., Stacey, R., Want, R., & Mao, S. (2010). A CSMA/CA MAC protocol for multi-user MIMO wireless LANs. GLOBECOM, pp. 1---6.
[12]
Zhu, C., Bhatt, A., Kim, Y., Aboul-magd, O., & Ngo, C. (2012). MAC enhancements for downlink multi-user MIMO transmission in next generation WLAN. CCNC, pp. 832---837.
[13]
Cha, J., Jin, H., Jung, B. C., & Sung, D. K. (2012). Performance comparison of downlink user multiplexing schemes in IEEE 802.11ac: Multi-user MIMO vs. frame aggregation. WCNC, pp. 1514---1519.
[14]
Jin, H., Jung, B. C., Hwang, H. Y., Sung, D. K. (2008). Performance comparison of uplink WLANs with single-user and multi-user MIMO schemes. WCNC, pp. 1854---1859.
[15]
Zheng, P. X., Zhang, Y. J., Liew, S. C. (2006). Multipacket reception in wireless local area networks. ICC, pp. 3670---3675.
[16]
Tan, K., Liu, H., Fang, J., Wang, W., Zhang, J., Chen, M., & Voelker, G. M. (2009). SAM: Enabling practical spatial multiple access in wireless LAN. INFOCOM, pp. 49---60.
[17]
Babich, F., & Comisso, M. (2010). Theoretical analysis of asynchronous multi-packet reception in 802.11 networks. IEEE Transactions on Communications, 58(6), 1782---1794.
[18]
Tandai, T., Mori, H., & Takagi, M. (2009). Cross-layer-optimized user grouping strategy in downlink multiuser MIMO systems. VTC, pp. 1---6.
[19]
Zhou, S., & Niu, Z. (2010). Distributed medium access control with SDMA support for WLANs. IEICE Transactions, 93---b(4), 961---970.
[20]
Zhang, Y. J. (2010). Multi-round contention in wireless LANs with multipacket reception. IEEE Transactions on Wireless Communications, 9, 1503---1513.
[21]
Jung, D., Kim, R., & Lim, H. (2012). Asynchronous medium access protocol for multi-user MIMO based uplink WLANs. IEEE Transactions on Communications, 60(12), 3745---3754.
[22]
Shen, H., Lv, S., Sun, Y., Dong, X., Wang, X., & Zhou, X. (2012). Concurrent access control using subcarrier signature in heterogeneous MIMO-based WLAN. MACOM, pp. 109---121.
[23]
Jin, H., Jung, B. C., Hwang, H., & Sung, D. K. (2009). A throughput balancing problem between uplink and downlink in multi-user MIMO-based WLAN systems. WCNC, pp. 1---6.
[24]
Li, H., Attar, A., & Leung, V. C. M. (2010). Multi-user medium access control in wireless local area network. WCNC, pp. 1---6.
[25]
Ong, E. H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., & Nihtila, T. (2011). IEEE 802.11ac: Enhancements for very high throughput WLANs. PIMRC, pp. 849---853.
[26]
Aboul-Magd, O., Kwon, U., Kim, Y., & Zhu, C. (2013). Managing downlink multi-user mimo transmission using group membership. CCNC, pp. 370---375.
[27]
Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535---547.
[28]
Chen, G., & Szymanski, B. (2014). Component oriented simulation toolkit. http://www.ita.cs.rpi.edu/cost.html. Accessed 06.08.2014.
[29]
Chen, G., Branch, J., Pflug, M., Zhu, L., Szymanski, B. (2005). SENSE: A wireless sensor network simulator. In Advances in pervasive computing and networking (pp. 249---267). Springer.
[30]
Bellalta, B., Barcelo, J., Staehle, D., Vinel, A., & Oliver, M. (2012). On the performance of packet aggregation in IEEE 802.11ac MU-MIMO WLANs. IEEE Communications Letters, 16, 1588---1591.
[31]
Kumar, A., Altman, E., Miorandi, D., & Goyal, M. (2007). New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs. IEEE/ACM Transactions on Networking, 15, 588---601.
[32]
IEEE. (2005). IEEE standard for information technology-LAN/MAN-Part 11: Wireless LAN medium access control and physical layer specifications-amendment: Medium access control (MAC) enhancements for quality of service. IEEE 802.11e, pp. 1---211.
[33]
Barcelo, J., Bellalta, B., Cano, C., Faridi, A., & Oliver, M. (2014). On the distributed construction of a collision-free schedule in multi-hop packet radio networks. Telecommunication Systems, 56, 285---298.

Cited By

View all
  • (2024)Energy-Efficient Power Allocation Maximization for Multi-User MIMO Broadcast ChannelIEEE Transactions on Wireless Communications10.1109/TWC.2023.329445923:3(2011-2024)Online publication date: 1-Mar-2024
  • (2023)Energy-Efficient Power Allocation Maximization for MU-MIMO Multiple Access ChannelsIEEE Transactions on Wireless Communications10.1109/TWC.2022.321874422:5(3460-3471)Online publication date: 1-May-2023
  • (2019)Saturation throughput analysis of a carrier sensing based MU-MIMO MAC protocol in a WLAN under fading and shadowingWireless Networks10.1007/s11276-017-1614-y25:3(933-950)Online publication date: 1-Apr-2019
  • Show More Cited By
  1. Uni-MUMAC: a unified down/up-link MU-MIMO MAC protocol for IEEE 802.11ac WLANs

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Wireless Networks
        Wireless Networks  Volume 21, Issue 5
        July 2015
        329 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 July 2015

        Author Tags

        1. Down/up-link
        2. IEEE 802.11ac
        3. MAC
        4. MU-MIMO
        5. WLANs

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 06 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Energy-Efficient Power Allocation Maximization for Multi-User MIMO Broadcast ChannelIEEE Transactions on Wireless Communications10.1109/TWC.2023.329445923:3(2011-2024)Online publication date: 1-Mar-2024
        • (2023)Energy-Efficient Power Allocation Maximization for MU-MIMO Multiple Access ChannelsIEEE Transactions on Wireless Communications10.1109/TWC.2022.321874422:5(3460-3471)Online publication date: 1-May-2023
        • (2019)Saturation throughput analysis of a carrier sensing based MU-MIMO MAC protocol in a WLAN under fading and shadowingWireless Networks10.1007/s11276-017-1614-y25:3(933-950)Online publication date: 1-Apr-2019
        • (2018)Uplink Access Protocol in IEEE 802.11acIEEE Transactions on Wireless Communications10.1109/TWC.2018.284541017:8(5535-5551)Online publication date: 1-Aug-2018

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media