Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network

Published: 01 May 2019 Publication History

Abstract

Spectrum sensing plays a foundational role in cognitive radio sensor networks. However, only the methods with low computational complexity can be utilized due to energy restriction of sensor node. To this end, a novel frequency-domain spectrum sensing method is presented to satisfy corresponding requirements of cognitive radio sensor networks. Only the maximum value of power spectrum density is utilized as test statistic to reduce the computational complexity. According to the dependence of 2L real parts and imaginary parts of the maximum value of power spectrum density, we model the maximum value of power spectrum density as the central Chi-square distribution for the $$H_0$$H0 case and non-central Chi-square distribution for the $$H_1$$H1 case. Exploiting resulting distributions, we derive the analytic expressions for the detection probability and the false-alarm probability. Additionally, the computational complexity of the proposed method is quantitatively analyzed. Finally, we certify the proposed test statistic and the probability distribution of the maximum value of power spectrum density and evaluate the impact of some parameters on the detection performance experimentally. The theoretical analysis and simulation results demonstrate that the proposed algorithm can offer high performance gains over the existing time-domain detection method.

References

[1]
Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5---23.
[2]
Mitola, J., & Maguire, G, Jr. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communications, 9(6), 13---18.
[3]
Haykin, S. (2005). Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201---220.
[4]
Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116---130.
[5]
Axell, E., Leus, G., Larsson, E. G., et al. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101---116.
[6]
Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio AD Hoc networks. Ad Hoc Networks, 7(5), 810---836.
[7]
Akan, O., Karli, O., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34---40.
[8]
Monemian, M., Mahdavi, M., & Omidi, M. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829---1841.
[9]
Baradkar, H. M., & Akojwar, S. G. (2014). Implementation of energy detection method for spectrum sensing in cognitive radio based embedded wireless sensor network node. In 2014 International conference on electronic systems, signal processing and computing technologies (ICESC) (pp. 490---495).
[10]
Saberali, S. A., & Beaulieu, N. C. (2014). Matched-filter detection of the presence of MPSK signals. In 2014 International symposium on information theory and its applications (ISITA) (pp. 85---89).
[11]
Zhi, T., Tafesse, Y., & Sadle, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58---69.
[12]
Sedighi, S., Taherpour, A., Khattab, T., & Hasna, M. O.(2014). Multiple antenna cyclostationary-based detection of primary users with multiple cyclic frequency in cognitive radios. In Globecom 2014-cognitive radio and networks symposium (pp. 799---804).
[13]
Zeng, Y., & Liang, Y.-C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784---1793.
[14]
Shakir, M. Z., Rao, A., & Alouini, M.-S. (2013). Generalized mean detector for collaborative spectrum sensing. IEEE Transactions on Communications, 61(4), 1242---1253.
[15]
Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2013). Eigenvalue-based sensing and SNR estimation for cognitive radio in presence of noise correlation. IEEE Transactions on Vehicular Technology, 62(8), 3671---3684.
[16]
Mustapha, I., Ali, B. M., Sali, A., & Rasid, M. F. A.(2014). Energy-aware cluster based cooperative spectrum sensing for cognitive radio sensor networks. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT) (pp. 45---50).
[17]
Huang, X., Fei, H., Jun, W., Chen, H.-H., Wang, G., & Jiang, T. (2015). Intelligent cooperative spectrum sensing via hierarchical dirichlet process in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 33(5), 771---787.
[18]
Qu, Z., Xu, Y., & Yin, S. (2014). A novel clustering-based spectrum sensing in cognitive radio wireless sensor networks. 2014 IEEE 3rd international conference on cloud computing and intelligence systems (CCIS) (pp. 695---699).
[19]
Ergul, O., & Akan, O. B. (2014). Cooperative coarse spectrum sensing for cognitive radio sensor networks. IEEE Wireless Communications & Networking Conference, 23(4), 2055---2060.
[20]
Matinmikko, M., Sarvanko, H., Mustonen, M., & Mammela, A. (2009). Performance of spectrum sensing using Welch's periodogram in rayleigh fading channel. In Proceedings of the 4th international conference on CROWNCOM (pp. 1---5).
[21]
Gismalla, E. H., & Alsusa, E. (2011). Performance analysis of the periodogram-based energy detector in fading channels. IEEE Transactions on Signal Processing, 59(8), 3712---3721.
[22]
Gismalla, E. H., & Alsusa, E. (2012). On the performance of energy detection using Bartlett's estimate for spectrum sensing in cognitive radio systems. IEEE Transactions on Signal Processing, 60(7), 3394---3404.
[23]
Dikmese, E., Ilyas, Z., Sofotasios, P. C., Renfors, M., & Valkama, M. (2017). Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation. IEEE Journal on Selected Areas in Communications, 35(1), 159---172.
[24]
Sabahi, M. F., Masoumzadeh, M., & Forouzan, A. R. (2016). Frequency-domain wideband compressive spectrum sensing. IET Commun., 10(13), 1655---1664.
[25]
Simon, M. K. (2006). Probability distributions involving gaussian random variables: A handbook for engineers and scientists. New York: Springer.
[26]
Proakis, J. G., & Manolakis, D. G. (2007). Digital signal processing (4th ed.). Upper Saddle River: Pearson Prentice Hall.
[27]
Oppenheim, A. V., & Schafer, R. W. (1999). Discrete-time signal processing. Upper Saddle River: Prentice Hall.

Cited By

View all
  • (2020)Closed-Form Expressions for the Quantile Function of the Chi Square Distribution Using the Hybrid of Quantile Mechanics and Spline InterpolationWireless Personal Communications: An International Journal10.1007/s11277-020-07672-w115:3(2093-2112)Online publication date: 1-Dec-2020
  • (2020)EDMARA2: a hierarchical routing protocol for EH-WSNsWireless Networks10.1007/s11276-020-02328-w26:6(4303-4317)Online publication date: 1-Aug-2020

Index Terms

  1. Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Wireless Networks
      Wireless Networks  Volume 25, Issue 4
      May 2019
      730 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 May 2019

      Author Tags

      1. Cognitive radio sensor network
      2. Frequency-domain spectrum sensing
      3. The maximum value of power spectrum density
      4. Welch method

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 04 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Closed-Form Expressions for the Quantile Function of the Chi Square Distribution Using the Hybrid of Quantile Mechanics and Spline InterpolationWireless Personal Communications: An International Journal10.1007/s11277-020-07672-w115:3(2093-2112)Online publication date: 1-Dec-2020
      • (2020)EDMARA2: a hierarchical routing protocol for EH-WSNsWireless Networks10.1007/s11276-020-02328-w26:6(4303-4317)Online publication date: 1-Aug-2020

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media