Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

MIMO GS OVSF/OFDM Based Underwater Acoustic Multimedia Communication Scheme

Published: 01 July 2018 Publication History

Abstract

An underwater acoustic multimedia communication (UWAMC) system is proposed with 2400 transmission modes according to time-varying multipath underwater acoustic (UWA) channel conditions. The orthogonal variable spreading factor (OVSF) scheme and Gold sequence (GS) scramble code are integrated into multi-input multi-output UWAMC system based on orthogonal frequency-division multiplexing to achieve the quality of service of multimedia transmission in the UWA channel. Binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) adaptive modulation, direct mapping (DM) or space---time block code (STBC) transmission strategies, convolution channel code with rate 1/2 and 1/3, and a power assignment mechanism were adopted in the proposed system. Simulation results show that the bit error rate (BER) and power saving ratio (PSR) performance of the STBC strategy with transmission diversity is superior to that of the DM strategy without transmission diversity, and the performance of the BERs and PSRs of the transmission scheme with the GS scramble code surpasses that of the scheme without the code. The performance of the BERs and PSRs of BPSK modulation with a channel code rate of 1/3 is better than that of BPSK modulation with a channel code rate of 1/2, and the performances of BERs and PSRs of BPSK modulation with a channel code rate of 1/3 are better than that of QPSK modulation with a channel code rate of 1/3. As the length of the OVSF codes increases, the UWAMC system's BERs decrease, and its PSRs increase. The UWAMC system can achieve either maximum transmission speed or maximum transmission power efficiency.

References

[1]
Quazi, A. H., & Konrad, W. L. (1982). Underwater acoustic communications. IEEE Communication Magazine,20, 24---30.
[2]
Baggeroer, A. B. (1984). Acoustic telemetry-an overview. IEEE Journal Oceanic Engineering,OE9(4), 229---235.
[3]
Stojanovic, M. (1996). Recent advances in high speed underwater acoustic communications. IEEE Journal Oceanic Engineering,21(2), 125---136.
[4]
Sozer, E. M., Stojanovic, M., & Proakis, J. G. (2000). Underwater acoustic networks. IEEE Journal Oceanic Engineering,25(1), 72---83.
[5]
Kilfoyle, D. B., & Baggeroer, A. B. (2000). The state of the art in underwater acoustic telemetry. IEEE Journal Oceanic Engineering,25(1), 4---27.
[6]
Proakis, Sozer E. M., Rice, J. A., & Stojanovic, M. (2001). Shallow water acoustic networks. IEEE Communication Magazine,39(11), 114---119.
[7]
Chiu, L. Y. S. (???), Chang, A. (???), & Chen, C. F. (???). (2006). Reviews and aspects of underwater acoustic communication (???????????,????). Journal of Ocean and Underwater Technology (????????? ), 16(1), 22---39.
[8]
Zhou, G., Shim, T., & Shim, T. (2007). Adaptive transmission technique in underwater acoustic wireless communication. In L. Kang, Y. Liu, & S. Zeng (Eds.), LNCS (Vol. 4684, pp. 268---276). Berlin: Springer.
[9]
Parrish, N., Tracy, L., Roy, S., Arabshahi, P., & Fox, W. L. J. (2008). System design considerations for undersea networks: Link and multiple access protocols. IEEE Journal on Selected Areas in Communications,26(9), 1720---1730.
[10]
Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine,47(1), 84---89.
[11]
Singer, A. C., Nelson, J. K., & Kozat, S. S. (2009). Signal processing for underwater acoustic communications. IEEE Communications Magazine,47(1), 90---96.
[12]
Lin, C. F. (???), Chang, S. H. (???), & Invan, A. P. (2014). Advanced underwater communication technology (????????). Journal of Ocean and Underwater Technology (?????????), 24(3), 27---33.
[13]
Poncela, J., Aguayo, M. C., & Otero, P. (2012). Wireless underwater communications. Wireless Personal Communications,64, 547---560.
[14]
Song, H. C. (2016). An overview of underwater time-reversal communication. IEEE Journal of Oceanic Engineering,41(3), 644---655.
[15]
Benson, B., Li, Y., Faunce, B., et al. (2010). Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters,2(3), 58---61.
[16]
Wu, L., Trezzo, J., Mirza, D., et al. (2012). Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embedded Systems Letters,4(1), 1---4.
[17]
Sendra, S., Lloret, J., Jimenez, J. M., & Parra, L. (2016). Underwater acoustic modems. IEEE Sensors Journal,16(11), 4063---4071.
[18]
Cheng, X., Cheng, X., Yang, L., & Cheng, X. (2016). Cooperative OFDM underwater acoustic communications (pp. 1---12). Switzerland: Springer.
[19]
Nam, H., & An, S. (2011). Low-power based coherent acoustic modem for emerging underwater acoustic sensor networks. Wireless Personal Communications,57, 291---309.
[20]
Clemente, M. C., Ruiz-Vega, F., Otero, P., et al. (2014). Adaptive turbo coded modulation for shallow underwater acoustic communications. Wireless Personal Communications,78, 1231---1248.
[21]
Diamant, R., & Lampe, L. (2015). Adaptive error-correction coding scheme for underwater acoustic communication networks. IEEE Journal Oceanic Engineering,40(1), 104---114.
[22]
Qu, F., Wang, Z., & Yang, L. (2017). Differential orthogonal space-time block coding modulation for time-variant underwater acoustic channels. IEEE Journal Oceanic Engineering,42(1), 188---198.
[23]
Dol, H. S., Casari, P., Zwan T., & Otnes, R. (2017). Software-defined underwater acoustic modems: Historical review and the NILUS approach. IEEE Journal Oceanic Engineering,42(3), 722---737.
[24]
Konstantakos, D. P., Adams, A. E., & Sharif, B. S. (2004). Multicarrier code division multiple access (MC-CDMA) technique for underwater acoustic communication networks using short spreading sequences. IEE Proceedings Radar Sonar and Navigation,151(4), 231---239.
[25]
Tsimenidis, C. C., Hinton, O. R., Adams, A. E., & Sharif, B. S. (2001). Underwater acoustic receiver employing direct-sequence spread spectrum and spatial diversity combining for shallow-water multiaccess networking. IEEE Journal of Oceanic Engineering,26(4), 594---603.
[26]
He, C., Huang, J., & Ding, Z. (2009). A variable-rate spread-spectrum system for underwater acoustic communications. IEEE Journal of Oceanic Engineering,34(4), 624---633.
[27]
Lin, C. F., Chen, J. Y., Yu, Y. J., Yan, J. T., & Chang, S. H. (2010). Direct mapping OVSF-based transmission scheme for underwater acoustic multimedia communication. Journal of Marine Science and Technology,18(3), 413---418.
[28]
Huang, J., Zhou, S., & Willett, P. (2008). Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE Journal on Selected Areas in Communications,26(9), 1684---1696.
[29]
Kang, T., & Iltis, R. A. (2008). Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems. IEEE Journal on Selected Areas in Communications,26(9), 1650---1661.
[30]
Hwang, S. J., & Schniter, P. (2008). Efficient multicarrier communication for highly spread underwater acoustic channels. IEEE Journal on Selected Areas in Communications,26(9), 1674---1683.
[31]
Li, B., Huang, J., Zhou, S., Ball, K., Stojanovic, M., Freitag, L., et al. (2009). MIMO-OFDM for high-rate underwater acoustic communications. IEEE Journal of Oceanic Engineering,34(4), 624---633.
[32]
Pelekanakis, K., & Baggeroer, A. B. (2011). Exploiting space---time---frequency diversity with MIMO---OFDM for underwater acoustic communications. IEEE Journal of Oceanic Engineering,36(4), 502---513.
[33]
Lin, C. F., Shih, C. H., Chen, C. P., Leu, S. W., Wu, J. K., Tseng, C. H., et al. (2009). An OFDM-based transmission scheme for underwater acoustic multimedia. WSEAS Transactions on Communications,3(8), 343---352.
[34]
Lin, C. F., Chang, S. H., Lee, C. C., Wu, W. C., Chen, W. H., Chang, K. H., et al. (2013). Underwater acoustic multimedia communication based on MIMO OFDM. Wireless Personal Communications,71, 1231---1245.
[35]
Emre, Y., Kandasamy, V., Duman, T. M., Hursky, P., & Roy, S. (2008). Multi-input multi-output OFDM for shallow-water UWA communications. In Acoustics conference (pp. 5334---5338).
[36]
Radosevic, A., Ahmed, R., Duman, T. M., Proakis, John G., & Stojanovic, M. (2014). Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results. IEEE Journal of Oceanic Engineering,39(2), 357---370.
[37]
Wan, L., Zhou, H., Xu, X., Huang, Y., Zhou, S., Shi, Z., et al. (2015). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering,40(2), 327---336.
[38]
Zakharov, Y. V., & Morozov, A. K. (2015). OFDM transmission without guard interval in fast-varying underwater acoustic channels. IEEE Journal of Oceanic Engineering,40(1), 144---158.
[39]
Zorita, E. V., & Stojanovic, M. (2015). Space-frequency block coding for underwater acoustic communications. IEEE Journal of Oceanic Engineering,40(2), 303---314.
[40]
Kumar, P., & Kumar, P. (2015). A comparative study of spread OFDM with transmit diversity for underwater acoustic communications. Wireless Personal Communications,83, 69---86.
[41]
Kumar, P., & Kumar, P. (2016). Performance evaluation of ?/4-DQPSK OFDM over underwater acoustic channels. Wireless Personal Communications,91, 1137---1152.
[42]
Hwang, S. Y, Park, G. Y, Park, H. J, & Jhang, K. S. (2008). An improved implementation method of the gold sequence generator. In IEEE international symposium on consumer electronics.
[43]
Zhang, J., Zheng, Y. R., et al. (2008). Frequency-domain equalization for single carrier MIMO underwater acoustic communications. In MTS/IEEEOcean'08.

Cited By

View all
  • (2022)Research and Implementation of Turbo Coding Technology in High-Speed Underwater Acoustic OFDM CommunicationJournal of Robotics10.1155/2022/25763032022Online publication date: 1-Jan-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Wireless Personal Communications: An International Journal
Wireless Personal Communications: An International Journal  Volume 101, Issue 2
July 2018
583 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 July 2018

Author Tags

  1. Bit error rates
  2. Gold sequence
  3. Orthogonal variable spreading factor
  4. Power saving ratios
  5. Space---time block code
  6. Underwater acoustic multimedia communication

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Research and Implementation of Turbo Coding Technology in High-Speed Underwater Acoustic OFDM CommunicationJournal of Robotics10.1155/2022/25763032022Online publication date: 1-Jan-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media