Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Fast algorithms for determining (generalized) core groups in social networks

Published: 01 July 2011 Publication History

Abstract

The structure of a large network (graph) can often be revealed by partitioning it into smaller and possibly more dense sub-networks that are easier to handle. One of such decompositions is based on " k -cores", proposed in 1983 by Seidman. Together with connectivity components, cores are one among few concepts that provide efficient decompositions of large graphs and networks. In this paper we propose an efficient algorithm for determining the cores decomposition of a given network with complexity $${\mathcal{O}(m)}$$ , where m is the number of lines (edges or arcs). In the second part of the paper the classical concept of k -core is generalized in a way that uses a vertex property function instead of degree of a vertex. For local monotone vertex property functions the corresponding generalized cores can be determined in $${\mathcal{O}(m\cdot\max(\Delta,\log{n}))}$$ time, where n is the number of vertices and Δ is the maximum degree. Finally the proposed algorithms are illustrated by the analysis of a collaboration network in the field of computational geometry.

References

[1]
Ahmed A, Batagelj V, Fu X, Hong S-H, Merrick D, Mrvar A (2007) Visualisation and analysis of the internetmovie database. In: Proceedings of theAsia-Pacific symposium on visualisation (APVIS2007), Sydney, NSW, Australia, 5-7 February 2007. IEEE, New York, 17-24.
[2]
Alvarez-Hamelin JI, Dall'asta L, Barrat A, Vespignani A (2008) K -core decomposition of internet graphs: hierarchies, selfsimilarity and measurement biases. Netw Heterog Media 3(2):371-393.
[3]
Batagelj V, Mrvar A (2003) Pajek--analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 77-103. http://pajek.imfm.si
[4]
Batagelj V (2004) Pajek datasets: Geom. http://vlado.fmf.uni-lj.si/pub/networks/Data/Collab/Geom.htm
[5]
Batagelj V, Mrvar A (2000) Some analyses of Erdös collaboration graph. Soc Netw 22:173-186.
[6]
Batagelj V, Mrvar A, Zaver¿nik M (1999) Partitioning approach to visualization of large graphs. In: KratochvÍl J (ed) Proceedings of 7th international symposium on graph drawing, 15-19 September 1999, ¿ti¿ín Castle, Czech Republic (Lecture notes in computer science, vol. 1731). Springer, Berlin, pp 90-97.
[7]
Batagelj V, Brandenburg FJ, Didimo W, Liotta G, Palladino P, Patrignani M (2010) Visual analysis of large graphs using (X;Y)-clustering and hybrid visualizations. In: IEEE Pacific visualization 2010 (PacVis '10). IEEE, New YorK, pp 209-216.
[8]
Beebe NHF (2002) Nelson H. F. Beebe's bibliographies page. http://www.math.utah.edu/~beebe/ bibliographies.html
[9]
BeiroMG, Alvarez-Hamelin JI, Busch JR (2008) A low complexity visualization tool that helps to perform complex systems analysis. New J Phys 10:125003, 1-18.
[10]
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge.
[11]
Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k -Core architecture and k -core percolation on complex networks. Phys D Nonlinear Phenom 224(1-2):7-19.
[12]
Eisterlehner F, Hotho A, Jäschke R (eds) (2009) Proceedings of ECML PKDD discovery challenge 2009 (DC09). http://www.kde.cs.uni-kassel.de/ws/dc09/papers/proceedings.pdf
[13]
Garey MR, Johnson DS (1979) Computer and intractability. Freeman, San Francisco.
[14]
Janson S, Luczak MJ (2008) Asymptotic normality of the k -core in random graphs. Ann Appl Probab 18(3):1085-1137.
[15]
Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. Lecture notes in computer science, vol 4702. Springer, Berlin, pp 506-514.
[16]
Jones B (2002) Computational geometry database. http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios. html, ftp://ftp.cs.usask.ca/pub/geometry/
[17]
LaNet-vi (2009) Large network visualization tool. http://xavier.informatics.indiana.edu/lanet-vi/
[18]
Seidman SB (1983) Network structure and minimum degree. Soc Netw 5:269-287.
[19]
Schwartz J-M, Nacher JC (2009) Local and global modes of drug action in biochemical networks. BMC Chem Biol 9:4-114.
[20]
Wang J-C, Chiu C-C (2008) Recommending trusted online auction sellers using social network analysis. Expert Syst Appl Int J Arch 34(3):1666-1679.
[21]
Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge.
[22]
Welsh DJA, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1):85-86.
[23]
Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5:444-449.

Cited By

View all
  • (2024)The Core Might Change Anyhow We Define ItComplexity10.1155/2024/39568772024Online publication date: 1-Jan-2024
  • (2024)Efficient State Sharding in Blockchain via Density-based Graph PartitioningACM Transactions on the Web10.1145/369784019:1(1-28)Online publication date: 27-Sep-2024
  • (2024)A Unified Core Structure in Multiplex Networks: From Finding the Densest Subgraph to Modeling User EngagementProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3672011(1028-1039)Online publication date: 25-Aug-2024
  • Show More Cited By
  1. Fast algorithms for determining (generalized) core groups in social networks

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Advances in Data Analysis and Classification
      Advances in Data Analysis and Classification  Volume 5, Issue 2
      July 2011
      98 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 July 2011

      Author Tags

      1. 05A18
      2. 05C70
      3. 05C85
      4. 05C90
      5. 68R10
      6. 68W40
      7. 92G30
      8. 92H30
      9. 93A15
      10. Core
      11. Decomposition
      12. Graph algorithm
      13. Large network

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)The Core Might Change Anyhow We Define ItComplexity10.1155/2024/39568772024Online publication date: 1-Jan-2024
      • (2024)Efficient State Sharding in Blockchain via Density-based Graph PartitioningACM Transactions on the Web10.1145/369784019:1(1-28)Online publication date: 27-Sep-2024
      • (2024)A Unified Core Structure in Multiplex Networks: From Finding the Densest Subgraph to Modeling User EngagementProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3672011(1028-1039)Online publication date: 25-Aug-2024
      • (2024)Privacy-Preserving Approximate Minimum Community Search on Large NetworksIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.337620119(4146-4160)Online publication date: 11-Mar-2024
      • (2024)Leveraging neighborhood and path information for influential spreaders recognition in complex networksJournal of Intelligent Information Systems10.1007/s10844-023-00822-z62:2(377-401)Online publication date: 1-Apr-2024
      • (2023)Temporal SIR-GN: Efficient and Effective Structural Representation Learning for Temporal GraphsProceedings of the VLDB Endowment10.14778/3598581.359858316:9(2075-2089)Online publication date: 10-Jul-2023
      • (2023)Neighborhood-Based Hypergraph Core DecompositionProceedings of the VLDB Endowment10.14778/3598581.359858216:9(2061-2074)Online publication date: 1-May-2023
      • (2023)Efficient distance-generalized (α, β)-core decomposition on bipartite graphsProceedings of the ACM Turing Award Celebration Conference - China 202310.1145/3603165.3607458(162-163)Online publication date: 28-Jul-2023
      • (2023)Exploring Cohesive Subgraphs in Hypergraphs: The (k,g)-core ApproachProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3615275(4013-4017)Online publication date: 21-Oct-2023
      • (2023)Efficient Exact Minimum k-Core Search in Real-World GraphsProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3614861(3391-3401)Online publication date: 21-Oct-2023
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media