Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Probabilistic validation approach for clustering

Published: 01 November 1995 Publication History

Abstract

The suggested approach combines the phases of cluster validity and cluster tendency inside the scope of the clustering algorithm. The algorithm is based on a probabilistic approach and is invariant to the scaling of features. The result is an efficient algorithm whose performance is demonstrated on real and synthetic data.

References

[1]
Comparison of Classifiers in High Dimensional Settings. In: Tech. Rep. no. 92-02, Dept. of Computer Science and Mathematics, James Cook University of North Queensland, NY.
[2]
A probabilistic approach for clustering. Pattern Recognition Lett. v12. 193-198.
[3]
A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. vI. 222-227.
[4]
Percentage of a test for clusters. J. Amer. Stat. Assoc. v64. 1647-1648.
[5]
Exploratory projection pursuit. J. Amer. Stat. Assoc. v82. 249-266.
[6]
Bootstrap technique in cluster analysis. Pattern Recognition. v20. 547-568.
[7]
Algorithms for Clustering Data. Prentice-Hall.
[8]
Simulated Annealing: Theory and Applications. Reidel, Englewood Cliffs, NJ.
[9]
A simulated annealing algorithm for the clustering problem. Pattern Recognition. v24. 1003-1008.

Cited By

View all
  • (2023)Social Vulnerability Assessment Based on Projection Pursuit Dynamic Cluster ModelProceedings of the 2023 6th International Conference on Information Management and Management Science10.1145/3625469.3625510(176-180)Online publication date: 25-Aug-2023
  • (2023)Probability Density Function for Clustering ValidationHybrid Artificial Intelligent Systems10.1007/978-3-031-40725-3_12(133-144)Online publication date: 5-Sep-2023
  • (2005)Combining Multiple Clusterings Using Evidence AccumulationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2005.11327:6(835-850)Online publication date: 1-Jun-2005
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Pattern Recognition Letters
Pattern Recognition Letters  Volume 16, Issue 11
Nov. 1995
103 pages
ISSN:0167-8655
  • Editors:
  • E. Backer,
  • E. S. Gelsema
Issue’s Table of Contents

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 November 1995

Author Tags

  1. Cluster analysis
  2. Probabilistic validation
  3. Projection pursuit
  4. Simulating annealing
  5. Unsupervised hierarchical clustering

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Social Vulnerability Assessment Based on Projection Pursuit Dynamic Cluster ModelProceedings of the 2023 6th International Conference on Information Management and Management Science10.1145/3625469.3625510(176-180)Online publication date: 25-Aug-2023
  • (2023)Probability Density Function for Clustering ValidationHybrid Artificial Intelligent Systems10.1007/978-3-031-40725-3_12(133-144)Online publication date: 5-Sep-2023
  • (2005)Combining Multiple Clusterings Using Evidence AccumulationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2005.11327:6(835-850)Online publication date: 1-Jun-2005
  • (2005)On Rival Penalization Controlled Competitive Learning for Clustering with Automatic Cluster Number SelectionIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2005.18417:11(1583-1588)Online publication date: 1-Nov-2005
  • (2003)k-meansPattern Recognition Letters10.1016/S0167-8655(03)00146-624:15(2883-2893)Online publication date: 1-Nov-2003
  • (2002)Evidence Accumulation Clustering Based on the K-Means AlgorithmProceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition10.5555/645890.671406(442-451)Online publication date: 6-Aug-2002

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media