Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A multichannel watershed-based algorithm for supervised texture segmentation

Published: 01 June 2003 Publication History

Abstract

Segmentation of image regions based on their texture is a standard problem in image analysis. Once a set of texture features is selected, several algorithms can be applied to segment the image into regions. This paper presents an extension of the watershed algorithm using a vector gradient and multivariate region merging methods. The algorithm uses a set of texture images, and it only depends on an adjustable parameter. Results are presented on a standard set of synthetic images and on textured medical ones, using different texture parameters and merging criteria.

References

[1]
Beucher, 1994. Watershed, hierarchical segmentation and waterfall algorithm. In: Dougherty, E. (Ed.), Mathematical Morphology and its Applications to Image Processing. Kluwer, Boston.
[2]
Beucher, S., Meyer, F., 1990. Morphological segmentation. J. Vis. Comm. Image Rep. 1 (1), 21-45.
[3]
Beucher, S., Meyer, F., 1993. The morphological approach to segmentation: the watershed transformation. In: Dougherty, E. (Ed.), Mathematical Morphology in Image Processing. Marcel Dekker, New York.
[4]
Chellappa, R., Chatterjee, S., 1985. Classification of textures using gaussian Markov random fields. IEEE Trans. Acoustics, Speech Signal Process. 33 (4), 959-963.
[5]
Corneloup, G., Moysan, J., Magnin, I.E., 1996. BSCAN image segmentation by thresholding using cooccurrence matrix analysis. Pattern Recognit. 29 (2), 281-296.
[6]
Cumani, A., 1991. Edge detection in multispectral images. Comput. Vision Graphics Image Process.: Graphical Models Image Process. 53, 40-51.
[7]
DiZenzo, S., 1986. A note on the gradient of a multi-image. Comput. Vision Graphics Image Process. 33, 116-125.
[8]
Haralick, R., 1979. Statistical and structural approaches to texture. Proc. IEEE 67 (5), 786-804.
[9]
Haris, K., Efstratiadis, S., Maglaveras, N., Katsaggelos, A., 1998. Hybrid image segmentation using watersheds and fast region merging. IEEE Trans. Image Process. 7 (12), 1684-1699.
[10]
Hill, P.R., Canagarajah, C.N., Hull, D.R., 2002. Texture gradient based watershed segmentation. IEEE Internat. Conf. Acoustics, Speech, Signal Process. 4, 3381-3384.
[11]
Jones, G., 1994. Image segmentation using texture boundary detection. Pattern Recognition Lett. 15, 533-541.
[12]
Lee, H., 1991. Detecting boundaries in a vector field. IEEE Transactions on Image Processing 39 (5), 1181-1194.
[13]
Maes, F., Vandermeulen, D., Suetens, P., Marchal, G., 1995. Automatic image partitioning for generic object segmentation in medical images. In: 14th International Conference on Information Processing in Medical Imaging, pp. 215-226.
[14]
Marcotegui, B., Crespo, J., Meyer, F., 1995. Morphological segmentation using texture and coding cost. In: IEEE Workshop on Nonlinear Signal and Image Processing, pp. 246-249.
[15]
Muzzolini, R., Yang, Y., Pierson, R.A., 1993. A multiresolution texture segmentation approach with application to diagnostic ultrasound images. IEEE Transactions on Medical Imaging 12 (1), 108-123.
[16]
Najman, L., Schmitt, M., 1996. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (12), 1166-1173.
[17]
Ojala, T., Pietikäinen, M., 1999. Unsupervised texture segmentation using feature distributions. Pattern Recognition 32, 477-486.
[18]
Ojala, T., Valkealahti, K., Oja, E., Pietikinen, M., 2001. Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition 34, 727-739.
[19]
Randen, T., Husoy, J.H., 1999. Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (4), 291-310.
[20]
Santos, A., Ramiro, C., Desco, M., Malpica, N., Tejedor, A., Torres, A., Ledesma-Carbayo, M.J., Castilla, M., Garcia-Barreno, P., 2001. Automatic detection of cellular necrosis in epithelial cell cultures. In: Proc. SPIE Medical Imaging 2001: Image Process., Vol. 4322, pp. 1836-1844.
[21]
Shafarenko, L., Petrou, M., Kittler, J., 1997. Automatic watershed segmentation of randomly textured color images. IEEE Trans. Image Process. 6 (11), 1530-1544.
[22]
Sijbers, J., Scheunders, P., Verhoye, M., Linden, A.V.D., Dyck, D.V., Raman, E., 1997. Watershed segmentation of 3D MR data for volume quantization. Magnetic Resonance Imaging 15 (6), 679-688.
[23]
Unser, M., 1995. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4, 1549-1560.
[24]
Vincent, L., 1993. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 2 (2), 176-201.
[25]
Vincent, L., Soille, P., 1991. Watersheds in digital space: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Machine Intell. 13 (6), 583-598.
[26]
Weldon, T.P., Higgins, W.E., Dunn, D.F., 1996. Efficient Gabor filter design for texture segmentation. Pattern Recognit. 29 (12), 2005-2015.

Cited By

View all
  • (2023)Materialistic: Selecting Similar Materials in ImagesACM Transactions on Graphics10.1145/359239042:4(1-14)Online publication date: 26-Jul-2023
  • (2021)Radiomics-Led Monitoring of Non-small Cell Lung Cancer Patients During RadiotherapyMedical Image Understanding and Analysis10.1007/978-3-030-80432-9_39(532-546)Online publication date: 12-Jul-2021
  • (2015)Efficient levels of spatial pyramid representation for local binary patternsIET Computer Vision10.1049/iet-cvi.2015.00289:6(871-883)Online publication date: 1-Dec-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Pattern Recognition Letters
Pattern Recognition Letters  Volume 24, Issue 9-10
01 June 2003
501 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 June 2003

Author Tags

  1. multichannel information
  2. texture segmentation
  3. watershed algorithm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Materialistic: Selecting Similar Materials in ImagesACM Transactions on Graphics10.1145/359239042:4(1-14)Online publication date: 26-Jul-2023
  • (2021)Radiomics-Led Monitoring of Non-small Cell Lung Cancer Patients During RadiotherapyMedical Image Understanding and Analysis10.1007/978-3-030-80432-9_39(532-546)Online publication date: 12-Jul-2021
  • (2015)Efficient levels of spatial pyramid representation for local binary patternsIET Computer Vision10.1049/iet-cvi.2015.00289:6(871-883)Online publication date: 1-Dec-2015
  • (2011)Estimating cell count and distribution in labeled histological samples using incremental cell searchJournal of Biomedical Imaging10.1155/2011/8747022011(1-16)Online publication date: 1-Jan-2011
  • (2009)Multivariate watershed segmentation of compositional dataProceedings of the 15th IAPR international conference on Discrete geometry for computer imagery10.5555/1813270.1813289(180-192)Online publication date: 30-Sep-2009
  • (2009)Multichannel texture segmentation using bamberger pyramidsJournal on Image and Video Processing10.1155/2009/5397132009(3-3)Online publication date: 1-Jan-2009
  • (2006)Texture classification using sparse frame-based representationsEURASIP Journal on Advances in Signal Processing10.1155/ASP/2006/525612006(102-102)Online publication date: 1-Jan-2006
  • (2006)The Bhattacharyya space for feature selection and its application to texture segmentationPattern Recognition10.1016/j.patcog.2005.12.00339:5(812-826)Online publication date: 1-May-2006

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media