Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Weak identifiability for differential algebraic systems

Published: 01 June 2023 Publication History

Abstract

We introduce a new notion of parameter identifiability for ODE systems following a multi-experiment approach. We show that a system that is identifiable according to previous well-known notions is also identifiable with our definition, but that the converse is not always true. In this sense, we speak of weak identifiability. We provide finite criteria to check weak identifiability and present algorithms that decide whether a system is weakly identifiable or not.

References

[1]
F. Anstett-Collin, L. Denis-Vidal, G. Millérioux, A priori identifiability: an overview on definitions and approaches, Annu. Rev. Control 50 (2020) 139–149.
[2]
D. Bearup, N. Evans, M. Chappell, The input-output relationship approach to structural identifiability analysis, Comput. Methods Programs Biomed. 109 (2) (2013) 171–181.
[3]
G. Bellu, M.P. Saccomani, S. Audoly, L. D'Angiò, DAISY: a new software tool to test global identifiability of biological and physiological systems, Comput. Methods Programs Biomed. 88 (2007) 52–61.
[4]
A.F. Brouwer, R. Meza, M.C. Eisenberg, A systematic approach to determining the identifiability of multistage carcinogenesis models, Risk Anal. 37 (7) (2017) 1375–1387.
[5]
G. Craciun, C. Pantea, Identifiability of chemical reaction networks, J. Math. Chem. 44 (2008) 244–259.
[6]
L. D'Alfonso, G. Jeronimo, F. Ollivier, A. Sedoglavic, P. Solernó, A geometric index reduction method for implicit systems of differential algebraic equations, J. Symb. Comput. 46 (2011) 1114–1138.
[7]
L. D'Alfonso, G. Jeronimo, P. Solernó, On the complexity of the resolvent representation of some prime differential ideals, J. Complex. 22 (2006) 396–430.
[8]
M. Giusti, J. Heintz, La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial, in: D. Eisenbud, L. Robbiano (Eds.), Computational Algebraic Geometry and Commutative Algebra, in: Symposia Matematica, vol. XXXIV, Cambridge University Press, 1993, pp. 216–256.
[9]
M. Giusti, J. Heintz, J.E. Morais, J. Morgenstem, L.M. Pardo, Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra 124 (1–3) (1998) 101–146.
[10]
M. Giusti, G. Lecerf, B. Salvy, A Gröbner free alternative for polynomial systems solving, J. Complex. 17 (2001) 154–211.
[11]
J. Harris, Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133, Springer-Verlag, 1995.
[12]
J. Heintz, C.-P. Schnorr, Testing polynomials which are easy to compute, in: Logic and Algorithmic (An International Symposium in Honour of Ernst Specker), in: Monographie de l'Enseignement Mathématique, vol. 30, 1982, pp. 237–254.
[13]
W.V.D. Hodge, D. Pedoe, Methods of Algebraic Geometry, Volume I, Cambridge University Press, 1953.
[14]
H. Hong, A. Ovchinnikov, G. Pogudin, C. Yap, Global identifiability of differential models, Commun. Pure Appl. Math. 73 (9) (2020) 1831–1879.
[15]
G. Jeronimo, M. Pérez Millán, P. Solernó, Identifiability from a few species for a class of biochemical reaction networks, Bull. Math. Biol. 81 (7) (2019) 2133–2175.
[16]
J. Karlsson, M. Anguelova, M. Jirstrand, An efficient method for structural identifiability analysis of large dynamical systems, IFAC Proc. Vol. 45 (16) (2012) 941–946.
[17]
T. Krick, L.M. Pardo, A computational method for Diophantine approximation, Prog. Math. 143 (1996) 193–254.
[18]
G. Lecerf, Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers, J. Complex. 19 (2003) 564–596.
[19]
L. Ljung, T. Glad, On global identifiability for arbitrary model parametrizations, Automatica 30 (2) (1994) 265–276.
[20]
N. Meshkat, M. Eisenberg, J.J. DiStefano III, An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner bases, Math. Biosci. 222 (2009) 61–72.
[21]
N. Meshkat, Z. Rosen, S. Sullivant, Algebraic tools for the analysis of state space models, in: T. Hibi (Ed.), The 50th Anniversary of Gröbner Bases, in: Advances in Pure Mathematics, vol. 77, Osaka, Japan, July 1–10, 2015, Mathematical Society of Japan, Tokyo, Japan, 2018, pp. 171–205.
[22]
F. Ollivier, Le problème de l'identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité, Ph.D. Thesis 1990.
[23]
A. Ovchinnikov, A. Pillay, G. Pogudin, T. Scanlon, Computing all identifiable functions of parameters for ODE models, Syst. Control Lett. 157 (2021),.
[24]
A. Ovchinnikov, A. Pillay, G. Pogudin, T. Scanlon, Multi-experiment parameter identifiability of ODEs and model theory, SIAM J. Appl. Algebra Geom. 6 (3) (2022) 339–367.
[25]
A. Ovchinnikov, G. Pogudin, P. Thompson, Input-output equations and identifiability of linear ODE models, IEEE Trans. Autom. Control 68 (2) (2023) 812–824,.
[26]
Ovchinnikov, A.; Pogudin, G.; Thompson, P. (2021): Parameter identifiability and input-output equations. AAECC https://doi.org/10.1007/s00200-021-00486-8.
[27]
L.M. Pardo, D. Sebastián, A promenade through correct test sequences I: degree of constructible sets, Bézout's Inequality and density, J. Complex. 68 (2022).
[28]
P. Pohjanpalo, System identifiability based on the power series expansion of the solution, Math. Biosci. 41 (1–2) (1978) 21–33.
[29]
S. Puddu, J. Sabia, An effective algorithm for quantifier elimination over algebraically closed fields using straight line programs, J. Pure Appl. Algebra 129 (2, 3) (1998) 173–200.
[30]
J.F. Ritt, Differential Algebra, American Mathematical Society, Providence, RI, 1950.
[31]
M. Saccomani, S. Audoly, L. D'Angiò, Parameter identifiability of nonlinear systems: the role of initial conditions, Automatica 39 (2003) 619–632.
[32]
J.P. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27 (1980) 701–717.
[33]
A. Sedoglavic, A probabilistic algorithm to test local algebraic observability in polynomial time, J. Symb. Comput. 33 (5) (2002) 735–755.
[34]
M. Sweedler, Using Groebner bases to determine the algebraic and transcendental nature of field extensions: return of the killer tag variables, in: G. Cohen, T. Mora, O. Moreno (Eds.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC 1993, in: Lecture Notes in Computer Science, vol. 673, Springer, Berlin, Heidelberg, 1993, pp. 66–75.
[35]
R. Zippel, Probabilistic algorithms for sparse polynomials, in: Symbolic and Algebraic Computation (EUROSAM'79), in: Lecture Notes in Comput. Sci., vol. 72, Springer, 1979, pp. 216–226.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Advances in Applied Mathematics
Advances in Applied Mathematics  Volume 147, Issue C
Jun 2023
349 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 June 2023

Author Tags

  1. 12H05
  2. 93B25
  3. 93B30
  4. 13P25

Author Tags

  1. Structural identifiability
  2. Differential-algebraic systems
  3. Multi-experimental approach
  4. Symbolic algorithms and complexity

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media