Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The unicyclic graphs with maximum degree resistance distance

Published: 01 October 2015 Publication History

Abstract

For a connected graph with order n and size m, the cyclomatic number (=number of independent cycles) is equal to γ = m - n + 1 . The graphs with γ = 1 are referred to the unicyclic graphs. In this paper, we characterized completely the unicyclic graphs with n vertices having maximum degree resistance distance.

References

[1]
D. Babić, D.J. Klein, I. Lukovits, S. Nikolić, N. Trinajstić, Resistance-distance matrix: a computational algorithm and its application, Int. J. Quantum Chem., 90 (2002) 166-176.
[2]
R.B. Bapat, I. Gutman, W.J. Xiao, A simple method for computing resistance distance, Z. Naturforsch., 58a (2003) 494-498.
[3]
D. Bonchev, A.T. Balaban, X. Liu, D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem., 50 (1994) 1-20.
[4]
A. Behtoei, M. Jannesari, B. Taeri, Maximum zagreb index, minimum hyper-wiener index and graphs connectivity, Appl. Math. Lett., 22 (2009) 1571-1576.
[5]
J.A. Bondy, U.S.R. Murty, Macmillan/Elsevier, London/New York, 1976.
[6]
O. Bucicovschi, S.M. Cioad', The minimum degree distance of graphs of given order and size, Discr. Appl. Math., 156 (2008) 3518-3521.
[7]
M. Bianchi, A. Cornaro, J.L. Palacios, A. Torriero, New upper and lower bounds for the additive degree-kirchhoff index, Croat. Chem. Acta, 86 (2013) 363-370.
[8]
Y. Chen, X. Zhang, On wiener and terminal wiener indices of trees, MATCH Commun. Math. Comput. Chem., 70 (2013) 591-602.
[9]
P. Dankelmannn, I. Gutman, S. Mukwembi, H.C. Swart, On the degree distance of a graph, Discr. Appl. Math., 157 (2009) 2773-2777.
[10]
K.C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011) 595-644.
[11]
A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001) 211-249.
[12]
A.A. Dobrynin, I. Gutman, S. Klav¿ar, P. ¿igert, Wiener index of hexagonal systems, Acta Appl. Math., 72 (2002) 247-294.
[13]
C.M. da Fonseca, M. Ghebleh, A. Kanso, D. Stevanovic, Counterexamples to a conjecture on wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem., 72 (2014) 333-338.
[14]
M. Dehmer, M. Grabner, The discrimination power of molecular identification numbers revisited, MATCH Commun. Math. Comput. Chem., 69 (2013) 785-794.
[15]
L. Feng, G. Yu, K. Xu, Z. Jiang, A note on the kirchhoff index of bicyclic graphs, Ars Comb., 114 (2014) 33-40.
[16]
B. Furtula, I. Gutman, H. Lin, More trees with all degrees odd having extremal wiener index, MATCH Commun. Math. Comput. Chem., 70 (2013) 293-296.
[17]
L. Feng, G. Yu, W. Liu, Further results regarding the degree kirchhoff index of graphs, Miskolc Math. Notes, 15 (2014) 97-108.
[18]
L. Feng, I. Gutman, G. Yu, Degree Kirchhoff index of unicyclic graphs, MATCH Commun. Math. Comput. Chem., 69 (2013) 629-648.
[19]
Q. Guo, H. Deng, D. Chen, The extremal kirchhoff index of a class of unicyclic graphs, MATCH Commun. Math. Comput. Chem., 61 (2009) 713-722.
[20]
I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb., 01 (2012) 27-40.
[21]
A. Hamzeh, A. Iranmanesh, T. Reti, I. Gutman, Chemical graphs constructed of composite graphs and their q-wiener index, MATCH Commun. Math. Comput. Chem., 72 (2014) 807-823.
[22]
A. Ilić, S. Klav¿ar, D. Stevanović, Calculating the degree distance of partial hamming graphs, MATCH Commun. Math. Comput. Chem., 63 (2010) 411-424.
[23]
V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of information-theoretic network measures, MATCH Commun. Math. Comput. Chem., 70 (2013) 885-900.
[24]
D.J. Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993) 81-95.
[25]
D.J. Klein, Graph geometry, graph metrics, and winner, MATCH Commun. Math. Comput. Chem., 35 (1997) 7-27.
[26]
M. Knor, B. Luzar, R. Skrekovski, I. Gutman, On wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem., 72 (2014) 321-332.
[27]
S. Ji, X. Li, Y. Shi, The extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem., 70 (2013) 697-706.
[28]
X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72 (2014) 183-214.
[29]
X. Li, Y. Li, Y. Shi, I. Gutman, Note on the homo-lumo index of graphs, MATCH Commun. Math. Comput. Chem., 70 (2013) 85-90.
[30]
B. Liu, I. Gutman, On general randic indices, MATCH Commun. Math. Comput. Chem., 58 (2007) 147-154.
[31]
B. Liu, Z. You, A survey on comparing zagreb indices, MATCH Commun. Math. Comput. Chem., 65 (2011) 581-593.
[32]
H. Lin, Extremal wiener index of trees with given number of vertices of even degree, MATCH Commun. Math. Comput. Chem., 72 (2014) 311-320.
[33]
J.L. Palacios, Upper and lower bounds for the additive degree-kirchhoff index, MATCH Commun. Math. Comput. Chem., 70 (2013) 651-655.
[34]
A.I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discr. Appl. Math., 156 (2008) 125-130.
[35]
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17-20.
[36]
W. Xiao, I. Gutman, On resistance matrices, MATCH Commun. Math. Comput. Chem., 49 (2003) 67-81.
[37]
K. Xu, M. Liu, K.C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014) 461-508.
[38]
Y. Yang, X. Jiang, Unicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem., 60 (2008) 107-120.
[39]
Y.J. Yang, H.P. Zhang, Some rules on resistance distance with applications, J. Phys. A: Math. Theor., 41 (2008).
[40]
H. Yuan, C. An, The unicyclic graphs with maximum degree distance, J. Math. Study, 39 (2006) 18-24.
[41]
H. Zhang, X. Jiang, Y. Yang, Bicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem., 61 (2009) 697-712.
[42]
B. Zhou, N. Trinajstić, On resistance-distance and kirchhoff index, J. Math. Chem., 46 (2009) 283-289.
[43]
B. Zhou, N. Trinajstić, The kirchhoff index and matching number, Int. J. Quantum Chem., 109 (2009) 2978-2981.

Cited By

View all
  1. The unicyclic graphs with maximum degree resistance distance

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Applied Mathematics and Computation
      Applied Mathematics and Computation  Volume 268, Issue C
      October 2015
      1301 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 October 2015

      Author Tags

      1. Degree resistance distance
      2. Mathematical chemistry
      3. Resistance distance
      4. Unicyclic graphs

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 04 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media