Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A geometrically intrinsic lagrangian-Eulerian scheme for 2D shallow water equations with variable topography and discontinuous data

Published: 15 April 2023 Publication History

Highlights

We propose a geometrically intrinsic Lagrangian-Eulerian method for 2D SWE on spatially variable topography.
The scheme is able to handle non-autonomous fluxes that come from discontinuous bottom topography.
The scheme produces non-negativity preservation for the water height under a new weak CFL stability constraint.
The proposed scheme is also free of Riemann problem solutions and no adaptive space-time discretizations are needed.
The simplicity of the component-wise approach for systems of equations is readily applicable.
We do not solve (local) Riemann problems and hence (time-consuming) field-by-field type decompositions are avoided for tracing the direction of the wind to handle non-autonomous fluxes and the discontinuous source terms.
The developed scheme is well-balanced and is able to capture than the lake at rest configuration.

Abstract

We present a Lagrangian-Eulerian scheme to solve the shallow water equations in the case of spatially variable bottom geometry. This work was dictated by the fact that geometrically Intrinsic Shallow Water Equations (ISWE) are characterized by non-autonomous fluxes. Handling of non-autonomous fluxes is an open question for schemes based on Riemann solvers (exact or approximate). Using a local curvilinear reference system anchored on the bottom surface, we develop an effective first-order and high-resolution space-time discretization of the no-flow surfaces and solve a Lagrangian initial value problem that describes the evolution of the balance laws governing the geometrically intrinsic shallow water equations. The evolved solution set is then projected back to the original surface grid to complete the proposed Lagrangian-Eulerian formulation. The resulting scheme maintains monotonicity and captures shocks without providing excessive numerical dissipation also in the presence of non-autonomous fluxes such as those arising from the geometrically intrinsic shallow water equation on variable topographies. We provide a representative set of numerical examples to illustrate the accuracy and robustness of the proposed Lagrangian-Eulerian formulation for two-dimensional surfaces with general curvatures and discontinuous initial conditions.

References

[1]
M. Nestler, I. Nitschke, A. Voigt, A finite element approach for vector- and tensor-valued surface PDEs, J. Comp. Phys. 389 (2019) 48–61.
[2]
E. Bachini, M. Putti, Geometrically intrinsic modeling of shallow water flows, Math. Model. Num. Anal. 54 (6) (2020) 2125–2157.
[3]
M.P. Neilson, J.A. Mackenzie, S.D. Webb, R.H. Insall, Modeling cell movement and chemotaxis using pseudopod-based feedback, SIAM J. Sci. Comput. 33 (3) (2011) 1035–1057.
[4]
J. Lowengrub, J. Allard, S. Aland, Numerical simulation of endocytosis: viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules, J. Comp. Phys. 309 (2016) 112–128.
[5]
I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, J. Fluid Mech. 708 (2012) 418.
[6]
F. Bouchut, M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Comm. Math. Sci. 2 (3) (2004) 359–389.
[7]
A. Decoene, L. Bonaventura, E. Miglio, F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for natural river hydraulics, Math. Mod. Meth. Appl. Sci. 19 (03) (2009) 387–417.
[8]
F. Bouchut, S. Boyaval, A new model for shallow viscoelastic fluids, Math. Mod. Meth. Appl. Sci. 23 (8) (2013) 1479–1526.
[9]
I. Fent, M. Putti, C. Gregoretti, S. Lanzoni, Modeling shallow water flows on general terrains, Adv. Water Resour. 121 (2018) 316–332.
[10]
J.R. Holton, An introduction to dynamic meteorology, Burlington, MA: Elsevier Academic Press, 2004.
[11]
R.L. Higdon, Numerical modelling of ocean circulation, Acta Num. 15 (2006) 385.
[12]
C. Vreugdenhil, Numerical methods for shallow-water flow, Water Science and Technology Library, Springer Netherlands, 1994.
[13]
L. Bonaventura, E.D. Fernández-Nieto, J. Garres-Díaz, G. Narbona-Reina, Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization, J. Comp. Phys. 364 (2018) 209–234.
[14]
R.L. Higdon, An automatically well-balanced formulation of pressure forcing for discontinuous Galerkin methods for the shallow water equations, J. Comp. Phys. (2022) 111102.
[15]
S. Lanzoni, A. Siviglia, A. Frascati, G. Seminara, Long waves in erodible channels and morphodynamic influence, Water Resour. Res. 42 (2006) W06D17.
[16]
R.M. Iverson, D.L. George, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. i. physical basis, Proc. R. Soc. London 470 (2170) (2014) 20130819.
[17]
S. Noelle, N. Pankratz, G. Puppo, J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comp. Phys. 213 (2) (2006) 474–499.
[18]
M.J. Castro, A. Pardo Milanés, C. Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Math. Mod. Meth. Appl. Sci. 17 (12) (2007) 2055–2113.
[19]
J.M. Gallardo, C. Parés, M. Castro, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comp. Phys. 227 (1) (2007) 574–601.
[20]
M. Castro Díaz, J. López-García, C. Parés, High order exactly well-balanced numerical methods for shallow water systems, J. Comp. Phys. 246 (2013) 242–264.
[21]
J.P. Berberich, P. Chandrashekar, C. Klingenberg, High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws, Comput. Fluids 219 (2021) 104858.
[22]
E. Godlewski, P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, volume 118 (Applied Mathematical Sciences Series), Springer, 2021 (Second Edition).
[23]
I. Gómez-Bueno, S. Boscarino, M.J. Castro, C. Parés, G. Russo, Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws, Appl. Num. Math. (Available online 30 September 2022).
[24]
S.B. Savage, K. Hutter, The dynamics of avalanches of granular materials from initiation to runout. part i: analysis, Acta Mech. 86 (1–4) (1991) 201–223.
[25]
J.A. Rossmanith, D.S. Bale, R.J. LeVeque, A wave propagation algorithm for hyperbolic systems on curved manifolds, J. Comp. Phys. 199 (2) (2004) 631–662.
[26]
D.S. Bale, R.J. Leveque, S. Mitran, J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput. 24 (3) (2003) 955–978.
[27]
B. Andreianov, K.H. Karlsen, N.H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, NHM 5 (3) (2010) 617–633.
[28]
B. Andreianov, K.H. Karlsen, N.H. Risebro, A theory of l 1-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201 (1) (2011) 27–86.
[29]
X. Sun, G. Wang, Y. Ma, A new modified local Lax-Friedrichs scheme for scalar conservation laws with discontinuous flux, Appl. Math. Let. 105 (2020) 106328.
[30]
D. Qiao, Z. Lin, M. Guo, X. Yang, X. Li, P. Zhang, X. Zhang, Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes, Appl. Math. Comput. 413 (2022) 126648.
[31]
F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-Balanced schemes for sources, Frontiers in Mathematics, volume 2/2004, Birkhäuser Basel, 2004.
[32]
M. Baldauf, Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and the ellipsoid, J. Comp. Phys. 410 (2020) 109384.
[33]
M.G. Carlino, E. Gaburro, Well balanced finite volume schemes for shallow water equations on manifolds, Appl. Math. Comput. 441 (2023) 127676.
[34]
E. Bachini, Numerical Methods for Shallow Water Equations on Regular Surfaces, Department of Mathematics ”Tulli Levi-Civita”, Doctoral Program in Mathematics, University of Padua, Italy, 2020, Ph.D. thesis.
[35]
D. Levy, G. Puppo, G. Russo, Central weno schemes for hyperbolic systems of conservation laws, ESAIM-Math. Model. Num. 33 (3) (1999) 547–571.
[36]
A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, J. Comp. Phys. 160 (1) (2000) 241–282.
[37]
M. Dumbser, W. Boscheri, M. Semplice, G. Russo, Central weighted eno schemes for hyperbolic conservation laws on fixed and moving unstructured meshes, SIAM J. Sci. Comput. 39 (6) (2017) A2564–A2591.
[38]
E.F. Toro, A. Hidalgo, M. Dumbser, FORCE Schemes on unstructured meshes i: conservative hyperbolic systems, J. Comp. Phys. 228 (9) (2009) 3368–3389.
[39]
C.-S. Huang, T. Arbogast, C.-H. Hung, A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws, J. Comp. Phys. 322 (2016) 559–585.
[40]
R. Loubere, P.-H. Maire, M. Shashkov, J. Breil, S. Galera, ReALE: a reconnection-based arbitrary-Lagrangian–Eulerian method, J. Comp. Phys. 229 (12) (2010) 4724–4761.
[41]
N.R. Morgan, M.A. Kenamond, D.E. Burton, T.C. Carney, D.J. Ingraham, An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics, J. Comp. Phys. 250 (2013) 527–554.
[42]
R. Loubere, M. Dumbser, S. Diot, A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys. 16 (3) (2014) 718–763.
[43]
W. Boscheri, R. Loubère, M. Dumbser, Direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws, J. Comp. Phys. 292 (2015) 56–87.
[44]
V.A. Dobrev, T. Ellis, T.V. Kolev, R. Rieben, Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids 65 (11–12) (2011) 1295–1310.
[45]
V.A. Dobrev, T.V. Kolev, R.N. Rieben, High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput. 34 (5) (2012) B606–B641.
[46]
V.A. Dobrev, T.E. Ellis, T.V. Kolev, R.N. Rieben, High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Comput. Fluids 83 (2013) 58–69.
[47]
N.R. Morgan, K.N. Lipnikov, D.E. Burton, M.A. Kenamond, A Lagrangian staggered grid Godunov-like approach for hydrodynamics, J. Comp. Phys. 259 (2014) 568–597.
[48]
E. Gaburro, M. Dumbser, M.J. Castro, Direct arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes, Comput. Fluids 159 (2017) 254–275.
[49]
X. Liu, N.R. Morgan, D.E. Burton, A Lagrangian discontinuous Galerkin hydrodynamic method, Comput. Fluids 163 (2018) 68–85.
[50]
E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, High order direct arbitrary-Lagrangian-Eulerian schemes on moving voronoi meshes with topology changes, J. Comp. Phys. 407 (2020) 109167.
[51]
N.R. Morgan, B.J. Archer, On the origins of Lagrangian hydrodynamic methods, Nucl. Technol. 207 (sup1) (2021) S147–S175.
[52]
J. Douglas, F. Pereira, L.-M. Yeh, A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media, Comput. Geosci. 4 (1) (2000) 1–40.
[53]
J. Douglas, F. Pereira, L.-M. Yeh, A Locally Conservative Eulerian-Lagrangian Method for Flow in a Porous Medium of a Mixture of Two Components Having Different Densities, Numerical Treatment of Multiphase Flows in Porous Media, Springer, 2000, pp. 138–155.
[54]
J. Douglas, C.-S. Huang, A locally conservative Eulerian-Lagrangian finite difference method for a parabolic equation, BIT Numer. Math. 41 (3) (2001) 480–489.
[55]
J. Pérez, Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws, University of Campinas, 2015, Ph.D. thesis.
[56]
E. Abreu, W. Lambert, J. Perez, A. Santo, A new finite volume approach for transport models and related applications with balancing source terms, Math. Comp. Simul. 137 (2017) 2–28.
[57]
E. Abreu, J. Pérez, A. Santo, Lagrangian–Eulerian approximation methods for balance laws and hyperbolic conservation laws, Rev. UIS Ing. 17 (1) (2018) 191–200.
[58]
E. Abreu, J. Pérez, A. Santo, A conservative Lagrangian–Eulerian finite volume approximation method for balance law problems, Proc. Ser. Braz. Soc. Comput. Appl. Math. 6 (1) (2018).
[59]
E. Abreu, J. François, W. Lambert, J. Pérez, A class of positive semi-discrete Lagrangian–Eulerian schemes for multidimensional systems of hyperbolic conservation laws, J. Scient. Comput. 90 (1) (2022) 1–79.
[60]
E. Abreu, J. François, W. Lambert, J. Pérez, A semi-discrete Lagrangian–Eulerian scheme for hyperbolic-transport models, J. Comput. Appl. Math. 406 (2022) 114011.
[61]
E. Abreu, J. Pérez, A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications, Comput. Math. Appl. 77 (9) (2019) 2310–2336.
[62]
E. Abreu, W. Lambert, J. Pérez, A. Santo, A weak asymptotic solution analysis for a Lagrangian–Eulerian scheme for scalar hyperbolic conservation laws, Proceedings of the Seventeenth International Conference on Hyperbolic Problems, 2020, pp. 223–230.
[63]
E. Abreu, C. Diaz, J. Galvis, J. Pérez, On the conservation properties in multiple scale coupling and simulation for Darcy flow with hyperbolic-transport in complex flows, Multiscale Model. Simul. 18 (4) (2020) 1375–1408.
[64]
T. Barth, R. Herbin, M. Ohlberger, Finite Volume Methods: Foundation and Analysis, vol. 010329-1, John Wiley & Sons, Ltd, 2017, pp. 1–60.
[65]
R.J. Leveque, Finite volume methods for hyperbolic problems, Cambridge University Press, Trumpington Street, Cambridge, UK, 2002.
[66]
E. Abreu, V. Matos, J. Pérez, P. Rodríguez-Bermúdez, A class of Lagrangian–Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms, J. Scient. Comput. 86 (1) (2021) 1–47.
[67]
E. Abreu, J. Perez, A. Santo, Solving hyperbolic conservation laws by using Lagrangian-Eulerian approach, Proc. Ser. Braz. Soc. Comput. Appl. Math. 5 ((1) 010329-1) (2017).
[68]
R. Eymard, T. Gallouët, R. Herbin, Convergence of a finite volume scheme for a nonlinear hyperbolic equation, Proceedings of the Third International Colloquium on Numerical Analysis, (Plovdiv, 1994)(Utrecht), VSP, 1995, pp. 61–70.
[69]
R. Eymard, T. Gallouët, R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chin. Ann. Math B16 (1995) 1–14.
[70]
C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. convergence towards the entropy solution and error estimate, Math. Model. Num. Anal. 33 (1) (1999) 129–156.
[71]
M.G. Crandall, A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (149) (1980) 1–21.

Cited By

View all
  • (2023)Preface for the special issue “Hyperbolic PDE in computational physicsApplied Mathematics and Computation10.1016/j.amc.2023.127994450:COnline publication date: 10-May-2023

Index Terms

  1. A geometrically intrinsic lagrangian-Eulerian scheme for 2D shallow water equations with variable topography and discontinuous data
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Applied Mathematics and Computation
          Applied Mathematics and Computation  Volume 443, Issue C
          Apr 2023
          567 pages

          Publisher

          Elsevier Science Inc.

          United States

          Publication History

          Published: 15 April 2023

          Author Tags

          1. Balance laws on surface
          2. Shallow water equations
          3. Non-autonomous fluxes
          4. Spatially variable topography
          5. Intrinsic lagrangian-Eulerian scheme
          6. No-flow surfaces

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Preface for the special issue “Hyperbolic PDE in computational physicsApplied Mathematics and Computation10.1016/j.amc.2023.127994450:COnline publication date: 10-May-2023

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media