Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation

Published: 07 January 2025 Publication History

Abstract

We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to H m with m ≥ 9, we prove error bounds at O ( τ 2 + h m ) and O ( τ 2 + h m − 1 ) in L 2 norm and H 1 norm respectively, for the proposed TSSP method, with τ time step and h mesh size. For general dimensional cases with d = 1, 2, 3, the error bounds are at O ( τ 2 + h m ) and O ( τ 2 + h m − 2 ) in L 2 and H 2 norm under the assumption that the exact solution is in H m with m ≥ 10. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the H 1- or H 2-bound of the numerical solution which implies the L ∞-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the solutions including rapidly dispersion in space of high frequency waves and soliton collisions.

References

[1]
X. Antoine, W. Bao, C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun. 184 (12) (2013) 2621–2633.
[2]
W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models 6 (1) (2013) 1–135.
[3]
W. Bao, Y. Cai, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 52 (3) (2014) 1103–1127.
[4]
W. Bao, Y. Cai, Y. Feng, Improved uniform error bounds of the time-splitting methods for the long–time (nonlinear) Schrödinger equation, Math. Comp. 92 (341) (2023) 1109–1139.
[5]
W. Bao, Q. Du, Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math. 66 (3) (2006) 758–786.
[6]
W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys. 187 (1) (2003) 318–342.
[7]
W. Bao, H. Li, J. Shen, A generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput. 31 (5) (2009) 3685–3711.
[8]
W. Bao, Y. Ma, C. Wang, Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity, Math. Models Methods Appl. Sci. 05 (34) (2024).
[9]
W. Bao, J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput. 26 (6) (2005) 2010–2028.
[10]
W. Bao, C. Wang, Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity, Math. Comp. 93 (2024) 1599–1631.
[11]
W. Bao, H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates, J. Comput. Phys. 217 (2) (2006) 612–626.
[12]
G. Baruch, G. Fibich, Singular solutions of the L 2-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity 24 (6) (2011) 1843–1859.
[13]
G. Baruch, G. Fibich, E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math. 70 (8) (2010) 3319–3341.
[14]
M. Ben-Artzi, H. Koch, J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci., Sér. 1 Math. 330 (2) (2000) 87–92.
[15]
D. Bonheure, J.-B. Casteras, E.M. Dos Santos, R. Nascimento, Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIAM J. Math. Anal. 50 (5) (2018) 5027–5071.
[16]
J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, vol. 46, American Mathematical Soc., 1999.
[17]
R.A. Capistrano-Filho, M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim. 84 (2021) 103–144.
[18]
R.A. Capistrano-Filho, M. Cavalcante, F.A. Gallego, Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane, Pac. J. Math. 309 (1) (2020) 35–70.
[19]
D.S. Clark, Short proof of a discrete Gronwall inequality, Discrete Appl. Math. 16 (3) (1987) 279–281.
[20]
S. Cui, C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces H s ( R n ) and applications, Nonlinear Anal. 67 (3) (2007) 687–707.
[21]
E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, Springer, 2006.
[22]
E. Hairer, S. Nørsett, G. Wanner, R. Graham, J. Stoer, R. Varga, Solving Ordinary Differential Equations I Nonstiff Problems, Springer-Verlag, 1993.
[23]
B. Ilan, G. Fibich, G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math. 62 (4) (2002) 1437–1462.
[24]
M. Karlsson, A. Höök, Soliton-like pulses governed by fourth order dispersion in optical fibers, Opt. Commun. 104 (4–6) (1994) 303–307.
[25]
V. Karpman, Influence of high-order dispersion on self-focusing. I. Qualitative investigation, Phys. Lett. A 160 (6) (1991) 531–537.
[26]
V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth–order nonlinear Schrödinger-type equations, Phys. Rev. E 53 (2) (1996).
[27]
V. Karpman, A. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D 144 (1–2) (2000) 194–210.
[28]
C. Kwak, Periodic fourth-order cubic NLS: local well-posedness and non-squeezing property, J. Math. Anal. Appl. 461 (2) (2018) 1327–1364.
[29]
X.-G. Li, Y. Cai, P. Wang, Operator-compensation methods with mass and energy conservation for solving the Gross-Pitaevskii equation, Appl. Numer. Math. 151 (2020) 337–353.
[30]
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (264) (2008) 2141–2153.
[31]
Y. Ma, T. Zhang, Error estimates of finite difference methods for the biharmonic nonlinear Schrödinger equation, J. Sci. Comput. 95 (1) (2023) 24.
[32]
R.I. McLachlan, G.R.W. Quispel, Splitting methods, Acta Numer. 11 (2002) 341–434.
[33]
F. Natali, A. Pastor, The fourth-order dispersive nonlinear Schrödinger equation: orbital stability of a standing wave, SIAM J. Appl. Dyn. Syst. 14 (3) (2015) 1326–1347.
[34]
T. Oh, N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Relat. Fields 169 (3) (2017) 1121–1168.
[35]
A. Ostermann, F. Rousset, K. Schratz, Error estimates at low regularity of splitting schemes for NLS, Math. Comp. 91 (333) (2022) 169–182.
[36]
T. Özsarı, N. Yolcu, The initial-boundary value problem for the biharmonic Schrödinger equation on the half–line, Commun. Pure Appl. Math. 18 (6) (2019) 3285–3316.
[37]
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ. 4 (3) (2007) 197–225.
[38]
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal. 256 (8) (2009) 2473–2517.
[39]
J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, vol. 41, Springer Science & Business Media, 2011.
[40]
J. Shen, Z.-Q. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation, Found. Comput. Math. 13 (1) (2013) 99–137.
[41]
C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, vol. 139, Springer Science & Business Media, 1999.
[42]
T. Wang, X. Zhao, Optimal l ∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions, Sci. China Math. 57 (10) (2014) 2189–2214.
[43]
J. Weideman, B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 23 (3) (1986) 485–507.
[44]
R. Wen, S. Chai, B.-Z. Guo, Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation, SIAM J. Control Optim. 52 (1) (2014) 365–396.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Numerical Mathematics
Applied Numerical Mathematics  Volume 207, Issue C
Jan 2025
657 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 07 January 2025

Author Tags

  1. 35Q41
  2. 65M15
  3. 65M70

Author Tags

  1. Biharmonic nonlinear Schrödinger equation
  2. Time-splitting pseudospectral method
  3. Strang splitting
  4. Error bound
  5. Energy method

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media