Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Subdimensional expansion for multirobot path planning

Published: 01 February 2015 Publication History

Abstract

Planning optimal paths for large numbers of robots is computationally expensive. In this paper, we introduce a new framework for multirobot path planning called subdimensional expansion, which initially plans for each robot individually, and then coordinates motion among the robots as needed. More specifically, subdimensional expansion initially creates a one-dimensional search space embedded in the joint configuration space of the multirobot system. When the search space is found to be blocked during planning by a robot-robot collision, the dimensionality of the search space is locally increased to ensure that an alternative path can be found. As a result, robots are only coordinated when necessary, which reduces the computational cost of finding a path. We present the M * algorithm, an implementation of subdimensional expansion that adapts the A * planner to perform efficient multirobot planning. M * is proven to be complete and to find minimal cost paths. Simulation results are presented that show that M * outperforms existing optimal multirobot path planning algorithms.

References

[1]
P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4(2) (1968) 100-107.
[2]
T. Standley, Finding optimal solutions to cooperative pathfinding problems, in: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA, 2010, pp. 173-178.
[3]
D. Ratner, M. Warmuth, Finding a shortest solution for the N × N extension of the 15-puzzle is intractable, J. Symb. Comput. 10 (1990) 111-137.
[4]
M. Erdmann, T. Lozano-Perez, On multiple moving objects, Algorithmica 2(1) (1987) 477-521, ISSN 0178-4617.
[5]
K. Kant, S. Zucker, Toward efficient trajectory planning: the path-velocity decomposition, Int. J. Robot. Res. 5(3) (1986) 72-89, ISSN 0278-3649.
[6]
S. Leroy, J.-P. Laumond, T. Siméon, Multiple path coordination for mobile robots: a geometric algorithm, in: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-613-0, 1999, pp. 1118-1123.
[7]
M. Saha, P. Isto, Multi-robot motion planning by incremental coordination, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 5960-5963.
[8]
D. Silver, Cooperative pathfinding, in: Proceedings of the 1st Conference on Artificial Intelligence and Interactive Digital Entertainment, Marina del Rey, California, USA, 2005, pp. 23-28.
[9]
G. Wagner, H. Choset, M*: a complete multirobot path planning algorithm with performance bounds, in: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 3260-3267.
[10]
C. Ferner, G. Wagner, H. Choset, ODrM*: optimal multirobot path planning in low dimensional search spaces, in: Proceedings of the IEEE/RSJ International Conference on Robotics and Automation, Karlsruhe, Germany, 2013.
[11]
D. Carmel, S. Markovitch, Incorporating opponent models into adversary search, in: AAAI/IAAI, vol. 1, Portland OR, USA, 1996.
[12]
A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. Sturtevant, J. Schaeffer, R. Holte, Partial-expansion A* with selective node generation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012.
[13]
M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. Holt, J. Schaeffer, Enhanced partial expansion A*, J. Artif. Intell. Res. 50 (2014) 141-187, http://dx.doi.org/10.1613/jair.4171.
[14]
R. Korf, Depth-first iterative-deepening: an optimal admissible tree search, Artif. Intell. 27(1) (1985) 97-109, http://dx.doi.org/10.1016/0004-3702(85)90084-0, ISSN 00043702.
[15]
S. Carpin, E. Pagello, On parallel RRTs for multi-robot systems, in: Proceedings of the 8th Conference of the Italian Association for Artificial Intelligence, 2002, pp. 834-841. Citeseer.
[16]
D. Ferguson, N. Kalra, A. Stentz, Replanning with RRTs, in: Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006, pp. 1243-1248.
[17]
G. Sánchez, J. Latombe, On delaying collision checking in PRM planning: application to multi-robot coordination, Int. J. Robot. Res. 21(1) (2002) 5.
[18]
G. Sanchez, J. Latombe, Using a PRM planner to compare centralized and decoupled planning for multi-robot systems, in: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, Washington D.C., USA, 2002, pp. 2112-2119.
[19]
M. Cáp, P. Novák, J. Vok¿ínek, M. Pechou¿ek, Multi-agent RRT*: sampling-based cooperative pathfinding, in: Autonomous Robots and Multirobot Systems Workshop at AAMAS 2013, 2013.
[20]
K. Solovey, O. Salzman, D. Halperin, Finding a needle in an exponential haystack: discrete RRT for exploration of implicit roadmaps in multi-robot motion planning, in: WAFR, 2014.
[21]
G. Wagner, M. Kang, H. Choset, Probabilistic path planning for multiple robots with subdimensional expansion, in: Proceedings of the IEEE/RSJ International Conference on Robotics and Automation, 2012.
[22]
R. Huang, Y. Chen, W. Zhang, A novel transition based encoding scheme for planning as satisfiability, in: AAAI Conference on Artificial Intelligence, 2010, pp. 89-94.
[23]
H. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in: IJCAI, 1999.
[24]
P. Surynek, An SAT-based approach to cooperative path-finding using all-different constraints, in: Proceedings of Symposium on Combinatorial Search, 2012, pp. 191-192.
[25]
P. Surynek, Optimal cooperative path-finding with generalized goals in difficult cases, in: Tenth Symposium of Abstraction, Reformulation, and Approximation, 2013, pp. 119-122.
[26]
E. Erdem, D.G. Kisa, U. Oztok, P. Schueller, A general formal framework for pathfinding problems with multiple agents, in: AAAI Conference on Artificial Intelligence, 2013, pp. 290-296.
[27]
T. Balyo, R. Bartak, P. Surynek, Shortening plans by local re-planning, in: 24th International Conference on Tools with Artificial Intelligence, Athens, Greece, 2012.
[28]
P. Surynek, Solving abstract cooperative path-finding in densely populated environments, in: Computational Intelligence, vol. 30, 2012.
[29]
R. Cui, B. Gao, J. Guo, Pareto-optimal coordination of multiple robots with safety guarantees, Auton. Robots 32(3) (2011) 189-205, ISSN 0929-5593.
[30]
J. Peng, S. Akella, Coordinating multiple robots with kinodynamic constraints along specified paths, Int. J. Robot. Res. 24(4) (2005) 295-310, ISSN 0278-3649.
[31]
S. LaValle, S. Hutchinson, Optimal motion planning for multiple robots having independent goals, IEEE Trans. Robot. Autom. 14(6) (1998) 912-925.
[32]
S. Leroy, J.-P. Laumond, T. Siméon, Multiple path coordination for mobile robots: a geometric algorithm, in: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-613-0, 1999, pp. 1118-1123.
[33]
J. Peng, S. Akella, Coordinating multiple robots with kinodynamic constraints along specified paths, Int. J. Robot. Res. 24(4) (2005) 295-310, ISSN 0278-3649.
[34]
T. Siméon, S. Leroy, J.-p. Laumond, Path coordination for multiple mobile robots: a resolution-complete algorithm, IEEE Trans. Robot. Autom. 18(1) (2002) 42-49.
[35]
M. Cáp, P. Novák, M. Selecky, J. Faigl, J. Vok¿ínek, Asynchronous decentralized prioritized planning for coordination in multi-robot system, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, ISBN 9781467363587, 2013, pp. 3822-3829.
[36]
V.R. Desaraju, J.P. How, Decentralized path planning for multi-agent teams with complex constraints, Auton. Robots 32(4) (2012) 385-403, ISSN 0929-5593.
[37]
R. Regele, P. Levi, Cooperative multi-robot path planning by heuristic priority adjustment, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, ISBN 1-4244-0258-1, 2006, pp. 5954-5959.
[38]
J. van den Berg, M. Overmars, Prioritized motion planning for multiple robots, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005, pp. 2217-2222.
[39]
A. Geramifard, P. Chubak, V. Bulitko, Biased cost pathfinding, in: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Marina del Rey, California, ISBN 978-1-57735-235-8, 2006, pp. 112-114.
[40]
S. Buckley, Fast motion planning for multiple moving robots, in: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 1989, pp. 322-326.
[41]
B. Maren, B. Wolfram, T. Sebastian, Constraint-based optimization of priority schemes for decoupled path planning techniques, in: KI 2001: Advances in Artificial Intelligence, 2001, pp. 78-93.
[42]
M. Turpin, N. Michael, V. Kumar, Trajectory planning and assignment in multirobot systems, in: International Workshop on Algorithmic Foundations of Robotics (WAFR), 2012.
[43]
M. Turpin, N. Michael, V. Kumar, Concurrent assignment and planning of trajectories for large teams of interchangeable robots, in: IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, ISBN 9781467356428, 2013, pp. 834-840.
[44]
R.M. Wilson, Graph puzzles, homotopy, and the alternating group, J. Comb. Theory, Ser. B (1974) 86-96.
[45]
D. Kornhauser, G. Miller, P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation groups, and applications, in: Proceedings of the 25th Symposium on Foundations of Computer Science (FOCS), Singer Island, FL, USA, 1984, pp. 241-250.
[46]
R. Gabriele, M. Helmert, Non-optimal multi-agent pathfinding is solved (since 1984), in: Symposium on Combinatorial Search, 2012, pp. 173-174.
[47]
M. Peasgood, J. McPhee, C. Clark, Complete and scalable multi-robot planning in tunnel environments, in: Proceedings of the First IFAC Workshop on Multivehicle Systems, Bahia, Brazil, 2006, pp. 75-80.
[48]
K. Wang, A. Botea, MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees, J. Artif. Intell. Res. 42 (2011) 55-90.
[49]
R. Luna, K. Bekris, Push and swap: fast cooperative path-finding with completeness guarantees, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011, pp. 294-300.
[50]
A. Krontiris, R. Luna, K.E. Bekris, From feasibility tests to path planners for multi-agent pathfinding, in: Proceedings of the Sixth International Symposium on Combinatorial Search, 2013, pp. 114-122.
[51]
B. de Wilde, A.W. ter Mors, C. Witteveen, Push and rotate: cooperative multi-agent path planning, in: Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Saint Paul, Minnesota, 2013, pp. 87-94.
[52]
M. Khorshid, R. Holte, N. Sturtevant, A polynomial-time algorithm for non-optimal multi-agent pathfinding, in: Proceedings of the Symposium on Combinatorial Search, Barcelona, Spain, 2011, pp. 76-83.
[53]
Q. Sajid, R. Luna, K.E. Bekris, Multi-agent pathfinding with simultaneous execution of single-agent primitives, in: Proceedings of the Fifth Annual Symposium on Combinatorial Search, 2012, pp. 88-96.
[54]
K. Al-Wahedi, A hybrid local-global motion planner for multi-agent coordination, Master's thesis, Case Western Reserve University, 2000.
[55]
J. van den Berg, J. Snoeyink, M. Lin, D. Manocha, Centralized path planning for multiple robots: optimal decoupling into sequential plans, in: Proceedings of the Robotics: Science and Systems, vol. 2, 2009.
[56]
G. Sharon, R. Stern, M. Goldenberg, A. Felner, The increasing cost tree search for optimal multi-agent pathfinding, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, San Francisco, CA, USA, 2011, pp. 662-667.
[57]
G. Sharon, R. Stern, A. Felner, N. Sturtevant, Conflict-based search for optimal multi-agent path finding, in: Proceedings of the AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012.
[58]
M. Barer, G. Sharon, R. Stern, A. Felner, Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem, in: Proceedings of the Sixth International Symposium on Combinatorial Search, 2014.
[59]
G. Sharon, R. Stern, A. Felner, N. Sturtevant, Meta-agent conflict-based search for optimal multi-agent path finding, in: Proceedings of the Symposium on Combinatorial Search, Niagara Falls, Ontario, Canada, 2012.
[60]
I. Pohl, The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem solving, in: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, 1973, pp. 12-17.
[61]
B. Bonet, H. Geffner, Planning as heuristic search, Artif. Intell. 129(1-2) (2001) 5-33, ISSN 0004-3702.
[62]
R. Korf, Linear-space best-first search, Artif. Intell. 62(1) (1993) 41-78, ISSN 0004-3702.
[63]
J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.
[64]
J. Gaschnig, Performance measurement and analysis of certain search algorithms, Ph.D. thesis, Carnegie-Mellon University, 1979.
[65]
H. Davis, A. Bramanti-Gregor, J. Wang, The advantages of using depth and breadth components in heuristic search, in: Methodologies for Intelligent Systems, vol. 3, 1989, pp. 19-28.
[66]
M. Goldenberg, A. Felner, N. Sturtevant, Optimal-generation variants of EPEA*, in: Proceedings of the Sixth International Symposium on Combinatorial Search, Leavenworth, Washington, USA, 2013, pp. 89-97.

Cited By

View all
  1. Subdimensional expansion for multirobot path planning

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Artificial Intelligence
    Artificial Intelligence  Volume 219, Issue C
    February 2015
    92 pages

    Publisher

    Elsevier Science Publishers Ltd.

    United Kingdom

    Publication History

    Published: 01 February 2015

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Multilevel motion planningInternational Journal of Robotics Research10.1177/0278364923120933743:1(3-33)Online publication date: 1-Jan-2024
    • (2024)MET-MAPF: A Metamorphic Testing Approach for Multi-Agent Path Finding AlgorithmsACM Transactions on Software Engineering and Methodology10.1145/366966333:8(1-37)Online publication date: 12-Jun-2024
    • (2024)The non-stop disjoint trajectories problemDiscrete Optimization10.1016/j.disopt.2024.10083752:COnline publication date: 1-May-2024
    • (2023)Anonymous Multi-Agent Path Finding with Individual DeadlinesProceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems10.5555/3545946.3598724(869-877)Online publication date: 30-May-2023
    • (2023)Quick multi-robot motion planning by combining sampling and searchProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/29(252-261)Online publication date: 19-Aug-2023
    • (2023)Improving LaCAM for scalable eventually optimal multi-agent pathfindingProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/28(243-251)Online publication date: 19-Aug-2023
    • (2023)Exploiting geometric constraints in multi-agent pathfindingProceedings of the Thirty-Third International Conference on Automated Planning and Scheduling10.1609/icaps.v33i1.27174(17-25)Online publication date: 8-Jul-2023
    • (2023)Hypergraph-Based Multi-robot Task and Motion PlanningIEEE Transactions on Robotics10.1109/TRO.2023.329701139:5(4166-4186)Online publication date: 1-Oct-2023
    • (2023)Near-Optimal Multi-Robot Motion Planning with Finite SamplingIEEE Transactions on Robotics10.1109/TRO.2023.328115239:5(3422-3436)Online publication date: 1-Oct-2023
    • (2023)CBSS: A New Approach for Multiagent Combinatorial Path FindingIEEE Transactions on Robotics10.1109/TRO.2023.326699339:4(2669-2683)Online publication date: 1-Aug-2023
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media