Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Nasseh method to visualize high-dimensional data

Published: 01 November 2019 Publication History

Abstract

Today’s ever-increasing application of high-dimensional data sets makes it necessary to find a way to fully comprehend them. One of these ways is visualizing data sets. However, visualizing more than 3-dimensional data sets in a fathomable way has always been a serious challenge for researchers in this field. There are some visualizing methods already available such as parallel coordinates, scatter plot matrix, RadViz, bubble charts, heatmaps, Sammon mapping and self organizing maps. In this paper, an axis-based method (called Nasseh method) is introduced in which familiar elements of visualization of 1-, 2- and 3-dimensional data sets are used to visualize higher dimensional data sets so that it will be easier to explore the data sets in the corresponding dimensions. Nasseh method can be used in many applications from illustrating points in high-dimensional geometry to visualizing estimated Pareto-fronts for many-objective optimization problems.

Graphical abstract

Display Omitted

Highlights

Nasseh method uses 3-D or 2-D plot to show high-dimensional data sets.
4th and 5th dimension axes are the same as 1st and 2nd dimension axes and so on.
Arrows and lines help to visualize high dimensions in Nasseh method.
Nasseh method can have a wide range of applications in different fields.
Nasseh method can be used to visualize high-dimensional geometry.

References

[1]
Li B., Li J., Tang K., Yao X., Many-objective evolutionary algorithms: A survey, ACM Comput. Surv. 48 (1) (2015) 13.
[2]
Tušar T., Filipič B., Visualization of pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method, IEEE Trans. Evol. Comput. 19 (2) (2015) 225–245.
[3]
Inselberg A., Dimsdale B., Parallel coordinates: a tool for visualizing multi-dimensional geometry, 1990,.
[4]
Wilkinson L., Anand A., Grossman R., High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions, IEEE Trans. Vis. Comput. Graphics 12 (6) (2006) 1363–1372.
[5]
Ashby M., Multi-objective optimization in material design and selection, Acta Mater. 48 (1) (2000) 359–369.
[6]
Poles S., Geremia P., Campos F., Weston S., Islam M., MOGA-II For an automotive cooling duct optimization on distributed resources, in: International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 633–644.
[7]
Pryke A., Mostaghim S., Nazemi A., Heatmap visualization of population based multi objective algorithms, in: International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 361–375.
[8]
Chernoff H., The use of faces to represent points in k-dimensional space graphically, J. Amer. Statist. Assoc. 68 (342) (1973) 361–368.
[9]
Lohninger H., INSPECT: A Program System to Visualize and Interpret Chemical Data, Elsevier, 1994.
[10]
Hoffman P., Grinstein G., Pinkney D., Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations, in: Proceedings of the 1999 Workshop on New Paradigms in Information Visualization and Manipulation in Conjunction with the Eighth ACM Internation Conference on Information and Knowledge Management, ACM, 1999, pp. 9–16.
[11]
Sammon J.W., A nonlinear mapping for data structure analysis, IEEE Trans. Comput. 100 (5) (1969) 401–409.
[12]
Lowe D., Tipping M., Feed-forward neural networks and topographic mappings for exploratory data analysis, Neural Comput. Appl. 4 (2) (1996) 83–95.
[13]
Tenenbaum J.B., De Silva V., Langford J.C., A global geometric framework for nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323.
[14]
Kohonen T., Maps S.-O., Springer series in information sciences, Self-Organ. Maps 30 (1995).
[15]
Liu S., Maljovec D., Wang B., Bremer P.-T., Pascucci V., Visualizing high-dimensional data: Advances in the past decade, IEEE Trans. Vis. Comput. Graph. 23 (3) (2016) 1249–1268.
[16]
Card M., Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann, 1999.
[17]
Rosario G.E., Rundensteiner E.A., Brown D.C., Ward M.O., Huang S., Mapping nominal values to numbers for effective visualization, Inf. Vis. 3 (2) (2004) 80–95.
[18]
Fleming P.J., Purshouse R.C., Lygoe R.J., Many-objective optimization: An engineering design perspective, in: International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2005, pp. 14–32.
[19]
Johansson J., Forsell C., Evaluation of parallel coordinates: Overview, categorization and guidelines for future research, IEEE Trans. Vis. Comput. Graph. 22 (1) (2016) 579–588.
[20]
Elmqvist N., Dragicevic P., Fekete J.-D., Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation, IEEE Trans. Vis. Comput. Graph. 14 (6) (2008) 1141–1148.
[21]
Witowski K., Liebscher M., Goel T., Decision making in multi-objective optimization for industrial applications–data mining and visualization of pareto data, in: Proceedings of the 7th European LS-DYNA Conference, 2009.
[22]
Valdés J.J., Barton A.J., Visualizing high dimensional objective spaces for multi-objective optimization: A virtual reality approach, in: 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 4199–4206.
[23]
Everson R.M., Fieldsend J.E., Multi-class ROC analysis from a multi-objective optimisation perspective, Pattern Recognit. Lett. 27 (8) (2006) 918–927.
[24]
Obayashi S., Sasaki D., Visualization and data mining of pareto solutions using self-organizing map, in: International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 796–809.
[25]
Borg I., Groenen P., Modern Multidimensional Scaling: Theory and Applications, in: Springer Series in Statistics, second ed., Springer Science+ Business Media, New York, NY, US, 2005.
[26]
Walker D., Fieldsend J., Everson R., Visualising many-objective populations, in: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, 2012, pp. 451–458.
[27]
Kudo F., Yoshikawa T., Knowledge extraction in multi-objective optimization problem based on visualization of pareto solutions, in: 2012 IEEE Congress on Evolutionary Computation, IEEE, 2012, pp. 1–6.
[28]
Dzemyda G., Kurasova O., Zilinskas J., Multidimensional Data Visualization, in: Methods and Applications Series: Springer Optimization and its Applications, vol. 75, Springer, 2013, p. 122.
[29]
Benhacine F.Z., Atmani B., Abdelouhab F.Z., Contribution to the association rules visualization for decision support: A combined use between boolean modeling and the colored 2d matrix, IJIMAI 5 (5) (2019) 38–47.
[30]
Etemadpour R., Linsen L., Paiva J.G., Crick C., Forbes A.G., Choosing visualization techniques for multidimensional data projection tasks: A guideline with examples, in: International Joint Conference on Computer Vision, Imaging and Computer Graphics, Springer, 2015, pp. 166–186.
[31]
Skiena S., Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1991.
[32]
Deb K., Thiele L., Laumanns M., Zitzler E., Scalable multi-objective optimization test problems, in: Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 1, IEEE, 2002, pp. 825–830.
[33]
Lee H.-H., Programming with MATLAB 2016, SDC Publications, 2016.
[34]
Chand S., Wagner M., Evolutionary many-objective optimization: A quick-start guide, Surv. Oper. Res. Manag. Sci. 20 (2) (2015) 35–42.
[35]
Tian Y., Cheng R., Zhang X., Jin Y., Platemo: A MATLAB platform for evolutionary multi-objective optimization [educational forum], IEEE Comput. Intell. Mag. 12 (4) (2017) 73–87.
[36]
Cheng R., Jin Y., Olhofer M., Sendhoff B., A reference vector guided evolutionary algorithm for many-objective optimization., IEEE Trans. Evol. Comput. 20 (5) (2016) 773–791.
[37]
Zwiebach B., A First Course in String Theory, Cambridge university press, 2004.
[38]
Fisher R.A., The use of multiple measurements in taxonomic problems, Ann. Eugenics 7 (2) (1936) 179–188.
[39]
A. Frank, UCI machine learning repository, http://archive.ics.uci.edu/ml.

Index Terms

  1. Nasseh method to visualize high-dimensional data
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Applied Soft Computing
          Applied Soft Computing  Volume 84, Issue C
          Nov 2019
          944 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 November 2019

          Author Tags

          1. Visualization
          2. High-dimensional geometry
          3. Coordinate
          4. High-dimensional data set
          5. Pareto-front visualization

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 13 Jan 2025

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media