Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An analytical tool to support public policies and isolation barriers against SARS-CoV-2 based on mobility patterns and socio-economic aspects

Published: 01 May 2023 Publication History

Abstract

It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many dashboards encountered in the literature do not consider how the geolocation characteristics and travel patterns may influence the spread of the virus. This work brings an interactive tool that is capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic variables. To do so, our system uses a mobility network, generated through anonymized mobile location data, which enables the division of a region into representative clusters. The clusters’ aggregated socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views. The proposal is to enable users to understand how different locations commute citizens, monitor risk over time, and understand what locations need more assistance, considering different layers of visualization, such as clusters and individual locations. The main novelty is the interactive way to construct the mobility network that defines the social distancing level and the way that risks are managed, since many different geolocation characteristics can be considered and visualized, such as socioeconomic indicators of a location, the economic importance of a set of locations, and the connection of important neighborhoods of a city with other cities. The proposed tool was built and verified by experts assembled to give scientific recommendations to the city administration of Recife, the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate different isolation scenarios considering the trade-off between economic activity and contamination risk, where the practical insights can also be used to tighten and relax mitigation measures in other phases of a pandemic.

Highlights

Visual analytics tool based on anonymized mobile phone users’ location data.
Considers mobility patterns and socio-economic aspects for recovery planning.
Visual analysis of clusters and of the spread of COVID-19 for reopening cities.
Well-being implications due to a risk-based social distancing management.
The visual analytics tool can be used to support policy analysis.

References

[1]
Gao X., Yu J., Public governance mechanism in the prevention and control of the COVID-19: information, decision-making and execution, J. Chin. Gov. 5 (2) (2020) 178–197.
[2]
Shrivastava S., Shrivastava P., Minimizing the risk of international spread of coronavirus disease 2019 (COVID-19) outbreak by targeting travelers, J. Acute Dis. 9 (2) (2020).
[3]
Kraemer M.U.G., Yang C.-H., Gutierrez B., Wu C.-H., Klein B., Pigott D.M., du Plessis L., Faria N.R., Li R., Hanage W.P., Brownstein J.S., Layan M., Vespignani A., Tian H., Dye C., Pybus O.G., Scarpino S.V., The effect of human mobility and control measures on the COVID-19 epidemic in China, Science 368 (6490) (2020) 493–497.
[4]
Katal A., (Leon) Wang L., Albettar M., A real-time web tool for monitoring and mitigating indoor airborne COVID-19 transmission risks at city scale, Sustainable Cities Soc. 80 (2022).
[5]
Fatimah B., Aggarwal P., Singh P., Gupta A., A comparative study for predictive monitoring of COVID-19 pandemic, Appl. Soft Comput. 122 (2022).
[6]
Zhou B., Yang G., Shi Z., Ma S., Interpretable temporal attention network for COVID-19 forecasting, Appl. Soft Comput. 120 (2022).
[7]
Gupta M., Jain R., Taneja S., Chaudhary G., Khari M., Verdú E., Real-time measurement of the uncertain epidemiological appearances of COVID-19 infections, Appl. Soft Comput. 101 (2021).
[8]
Ghosh B., Biswas A., Status evaluation of provinces affected by COVID-19: A qualitative assessment using fuzzy system, Appl. Soft Comput. 109 (2021).
[9]
Aggarwal L., Goswami P., Sachdeva S., Multi-criterion intelligent decision support system for COVID-19, Appl. Soft Comput. 101 (2021).
[10]
Keeney R.L., Value-focused thinking: Identifying decision opportunities and creating alternatives, European J. Oper. Res. 92 (3) (1996) 537–549.
[11]
OECD R.L., First lessons from government evaluations of COVID-19 responses: A synthesis, 2022, URL: https://www.oecd.org/coronavirus/policy-responses/first-lessons-from-government-evaluations-of-covid-19-responses-a-synthesis-483507d6/.
[12]
Xu S., Li Y., Beware of the second wave of COVID-19, Lancet 395 (10233) (2020) 1321–1322.
[13]
Silva J.C.S., de Lima Silva D.F., de Sá Delgado Neto A., Ferraz A., Melo J.L., Ferreira Júnior N.R., de Almeida Filho A.T., A city cluster risk-based approach for Sars-CoV-2 and isolation barriers based on anonymized mobile phone users’ location data, Sustainable Cities Soc. 65 (2021).
[14]
InLoco Company J.C.S., Location data to control COVID-19 while respecting individual privacy, 2020.
[15]
Andrienko N., Andrienko G., Informed spatial decisions through coordinated views, Inf. Vis. 2 (4) (2003) 270–285.
[16]
Chen W., Huang Z., Wu F., Zhu M., Guan H., Maciejewski R., VAUD: a visual analysis approach for exploring spatio-temporal urban data, IEEE Trans. Vis. Comput. Graph. 24 (9) (2018) 2636–2648.
[17]
Andrienko N., Andrienko G., Fuchs G., Jankowski P., Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces, Inf. Vis. 15 (2) (2016) 117–153.
[18]
Andrienko N., Andrienko G., Visual analytics of movement: an overview of methods, tools and procedures, Inf. Vis. 12 (2013) 3–24.
[19]
Zeng W., Fu C.-W., Arisona S.M., Qu H., Visualizing interchange patterns in massive movement data, in: Proceedings of the 15th Eurographics Conference on Visualization, EuroVis ’13, The Eurographs Association & John Wiley & Sons, Ltd., Chichester, GBR, 2013, pp. 271–280.
[20]
Di Lorenzo G., Sbodio M., Calabrese F., Berlingerio M., Pinelli F., Nair R., AllAboard: visual exploration of cellphone mobility data to optimise public transport, IEEE Trans. Vis. Comput. Graphics 22 (2) (2016) 1036–1050.
[21]
Alejandro Triana J., Zeckzer D., Hagen H., Tiberio Hernandez J., VafusQ: A methodology to build visual analysis applications with data quality features, Inf. Vis. 18 (4) (2019) 384–404.
[22]
Poco J., Doraiswamy H., Vo H.T., Comba J.L.D., Freire J., Silva C.T., Exploring traffic dynamics in urban environments using vector-valued functions, Comput. Graph. Forum 34 (3) (2015) 161–170.
[23]
Didimo W., Giamminonni L., Liotta G., Montecchiani F., Pagliuca D., A visual analytics system to support tax evasion discovery, Decis. Support Syst. 110 (2018) 71–83.
[24]
Sobral T., Galvao T., Borges J., Visualization of urban mobility data from intelligent transportation systems, Sensors 19 (2) (2019).
[25]
Boyandin I., Bertini E., Bak P., Lalanne D., Flowstrates: an approach for visual exploration of temporal origin-destination data, Comput. Graph. Forum 30 (2011) 971–980.
[26]
Coelho D., Chase I., Mueller K., PeckVis: a visual analytics tool to analyze dominance hierarchies in small groups, IEEE Trans. Vis. Comput. Graph. 26 (4) (2020) 1650–1660.
[27]
J. Chou, C. Bryan, K. Ma, Privacy preserving visualization for social network data with ontology information, in: 2017 IEEE Pacific Visualization Symposium (PacificVis), 2017, pp. 11–20.
[28]
Liu R., Feng S., Shi R., Guo W., Weighted graph clustering for community detection of large social networks, Procedia Comput. Sci. 31 (2014) 85–94.
[29]
Fortunato S., Community detection in graphs, Phys. Rep. 486 (3–5) (2010) 75–174.
[30]
Prignano L., Morer I., Fulminante F., Lozano S., Modelling terrestrial route networks to understand inter-polity interactions (southern Etruria, 950–500 BC), J. Archaeol. Sci. 105 (2019) 46–58.
[31]
Hua J., Huang M.L., Huang W., Zhao C., Applying graph centrality metrics in visual analytics of scientific standard datasets, Symmetry 11 (1) (2019).
[32]
Bean D.M., Stringer C., Beeknoo N., Teo J., Dobson R.J.B., Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance, PLoS One 12 (10) (2017).
[33]
Krueger R., Han Q., Ivanov N., Mahtal S., Thom D., Pfister H., Ertl T., Birds-eye - large-scale visual analytics of city dynamics using social location data, Comput. Graph. Forum 38 (3) (2019) 595–607.
[34]
von Landesberger T., Brodkorb F., Roskosch P., Andrienko N., Andrienko G., Kerren A., MobilityGraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering, IEEE Trans. Vis. Comput. Graphics 22 (1) (2016) 11–20.
[35]
Wang Y., Baciu G., Li C., Visualizing dynamics of urban regions through a geo-semantic graph-based method, Comput. Graph. Forum 39 (1) (2020) 405–419.
[36]
Lu X., Web-GIS-based SARS epidemic situation visualization, in: Sun J., Pan Z. (Eds.), Fourth International Conference on Virtual Reality and its Applications in Industry, Vol. 5444, International Society for Optics and Photonics, SPIE, 2004, pp. 445–452.
[37]
Polonsky J.A., Baidjoe A., Kamvar Z.N., Cori A., Durski K., Edmunds W.J., Eggo R.M., Funk S., Kaiser L., Keating P., de Waroux O.l.P., Marks M., Moraga P., Morgan O., Nouvellet P., Ratnayake R., Roberts C.H., Whitworth J., Jombart T., Outbreak analytics: a developing data science for informing the response to emerging pathogens, Philos. Trans. R. Soc. B 374 (1776) (2019).
[38]
World Health Organization J.A., Coronavirus disease (COVID-19) situation report – 136, 2020, URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
[39]
Dey S.K., Rahman M.M., Siddiqi U.R., Howlader A., Analyzing the epidemiological outbreak of COVID-19: A visual exploratory data analysis approach, J. Med. Virol. 92 (6) (2020) 632–638.
[40]
Gao P., Zhang H., Wu Z., Wang J., Visualising the expansion and spread of coronavirus disease 2019 by cartograms, Environ. Plan. A: Economy Space 52 (4) (2020) 698–701.
[41]
Nikolaou P., Dimitriou L., Identification of critical airports for controlling global infectious disease outbreaks: Stress-tests focusing in Europe, J. Air Transp. Manag. 85 (March) (2020).
[42]
Zhou C., Su F., Pei T., Zhang A., Du Y., Luo B., Cao Z., Wang J., Yuan W., Zhu Y., Song C., Chen J., Xu J., Li F., Ma T., Jiang L., Yan F., Yi J., Hu Y., Liao Y., Xiao H., COVID-19: challenges to GIS with big data, Geogr. Sustain. 1 (1) (2020) 77–87.
[43]
Xie X., Naminse E., Liu S., Yi Q., The spatial and temporal pattern of COVID-19 and its effect on humans’ development in China, Global J. Environ. Sci. Manag. 6 (Special Issue (Covid-19)) (2020).
[44]
Dong E., Du H., Gardner L., An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis. 20 (5) (2020) 533–534.
[45]
World Health Organization E., WHO coronavirus disease (COVID-19) dashboard, 2020, URL: https://covid19.who.int/.
[46]
Barone S., Chakhunashvili A., Comelli A., Building a statistical surveillance dashboard for COVID-19 infection worldwide, Qual. Eng. (2020).
[47]
Zhang S.-H., Cai Y., Li J., Visualization of COVID-19 spread based on spread and extinction indexes, Sci. China Inf. Sci. 63 (2020).
[48]
Khan S., Nguyen P.H., Abdul-Rahman A., Bach B., Chen M., Freeman E., Turkay C., Propagating visual designs to numerous plots and dashboards, IEEE Trans. Vis. Comput. Graphics 28 (1) (2022) 86–95.
[49]
Ipenza J.C.C., Romero N.M.L., Loreto M., Júnior N.F., Comba J.L.D., QDS-COVID: A visual analytics system for interactive exploration of millions of COVID-19 healthcare records in Brazil, Appl. Soft Comput. 124 (2022).
[50]
Preim B., Lawonn K., A survey of visual analytics for public health, Comput. Graph. Forum 39 (1) (2020) 543–580.
[51]
Barabasi A., Network Science, Cambridge University Press, 2016.
[52]
Reda K., Tantipathananandh C., Johnson A., Leigh J., Berger-Wolf T., Visualizing the evolution of community structures in dynamic social networks, Comput. Graph. Forum 30 (3) (2011) 1061–1070.
[53]
Tao J., Xu J., Wang C., Chawla N.V., HoNVis: Visualizing and exploring higher-order networks, in: 2017 IEEE Pacific Visualization Symposium (PacificVis), IEEE, 2017, pp. 1–10.
[54]
Luo W., Visual analytics of geo-social interaction patterns for epidemic control, Int. J. Health Geogr. 15 (1) (2016).
[55]
Linhares C.D.G., Travençolo B.A.N., Paiva J.G.S., Rocha L.E.C., DyNetVis: a system for visualization of dynamic networks, in: Proceedings of the Symposium on Applied Computing, SAC ’17, Association for Computing Machinery, New York, NY, USA, 2017, pp. 187–194,.
[56]
Linhares C.D.G., Ponciano J.R., Paiva J.G.S., Rocha L.E.C., Travençolo B.A.N., DyNetVis - An interactive software to visualize structure and epidemics on temporal networks, in: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM, 2020, pp. 933–936,.
[57]
Linhares C.D.G., Ponciano J.R., Paiva J.G.S., Travençolo B.A.N., Rocha L.E.C., Visualisation of structure and processes on temporal networks, in: Computational Social Sciences, Springer International Publishing, 2019, pp. 83–105,.
[58]
Abel G.J., Gietel-Basten S., International remittance flows and the economic and social consequences of COVID-19, Environ. Plan. A: Economy Space (2020).
[59]
Saraswathi S., Mukhopadhyay A., Shah H., Ranganath T.S., Social network analysis of COVID-19 transmission in Karnataka, India, Epidemiol. Infect. 148 (2020).
[60]
Luo C., Ma Y., Jiang P., Zhang T., Yin F., The construction and visualization of the transmission networks for COVID-19: A potential solution for contact tracing and assessments of epidemics, Sci. Rep. 11 (1) (2021).
[61]
Xu H., Berres A., Thakur G., Sanyal J., Chinthavali S., EPIsembleVis: A geo-visual analysis and comparison of the prediction ensembles of multiple COVID-19 models, J. Biomed. Inform. 124 (2021).
[62]
Jamonnak S., Bhati D., Amiruzzaman M., Zhao Y., Ye X., Curtis A., VisualCommunity: a platform for archiving and studying communities, J. Comput. Soc. Sci. 5 (2) (2022) 1257–1279.
[63]
Willcocks L.P., Sauer C., Lacity M.C., Formulating Research Methods for Information Systems, Palgrave Macmillan UK, London, 2015.
[64]
da Saúde M., Coronavírus Brasil, 2020, URL: https://covid.saude.gov.br/.
[65]
de Planejamento e Gestão S., COVID-19 no Mundo, no Brasil e em Pernambuco, 2020, URL: https://dados.seplag.pe.gov.br/apps/corona.html.
[66]
IBGE S., Intituto Brasileiro de Geografia e Estatística, 2020, URL: https://www.ibge.gov.br/.
[67]
Bondy J.A., Murty U.S.R., Graph Theory, in: Graduate Texts in Mathematics, vol. 244, Springer London, London, 2008.
[68]
Traag V.A., Waltman L., van Eck N.J., From Louvain to Leiden: guaranteeing well-connected communities, Sci. Rep. 9 (1) (2019).
[69]
Keeling M.J., Rohani P., Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
[70]
Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A., The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101 (11) (2004) 3747–3752.
[71]
Liu Y., Ning Z., Chen Y., Guo M., Liu Y., Gali N.K., Sun L., Duan Y., Cai J., Westerdahl D., Liu X., Xu K., fai Ho K., Kan H., Fu Q., Lan K., Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals, Nature (2020).
[72]
do Carvalhal Monteiro R.L., Pereira V., Costa H.G., Dependence analysis between childhood social indicators and human development index through canonical correlation analysis, Child Indic. Res. (2020).
[73]
do Carvalhal Monteiro R.L., Pereira V., Costa H.G., Analysis of the better life index trough a cluster algorithm, Soc. Indic. Res. 142 (2) (2019) 477–506.
[74]
do Carvalhal Monteiro R.L., Pereira V., Costa H.G., A multicriteria approach to the human development index classification, Soc. Indic. Res. 136 (2) (2018) 417–438.
[75]
Zhao Y., Wang Y., Zhang J., Fu C.-W., Xu M., Moritz D., KD-box: line-segment-based KD-tree for interactive exploration of large-scale time-series data, IEEE Trans. Vis. Comput. Graphics 28 (1) (2022) 890–900.
[76]
Silva J.C.S., Ferreira Júnior N.R., de Almeida Filho A.T., A tool for visualization and analysis of neighbourhoods, clusters, and indicators during the COVID-19 pandemic, Math. Probl. Eng. (2023),.
[77]
Zhang Y., Sun Y., Padilla L., Barua S., Bertini E., Parker A.G., Mapping the landscape of COVID-19 crisis visualizations, in: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, Association for Computing Machinery, New York, NY, USA, 2021.
[78]
Pine K.H., Lee M., Whitman S.A., Chen Y., Henne K., Making sense of risk information amidst uncertainty: individuals’ perceived risks associated with the COVID-19 pandemic, in: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, Association for Computing Machinery, 2021.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Soft Computing
Applied Soft Computing  Volume 138, Issue C
May 2023
543 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 May 2023

Author Tags

  1. Mobility patterns
  2. COVID-19
  3. SARS-CoV-2
  4. Network model
  5. Visualization
  6. Decision support

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media