Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Weighted ensemble clustering with multivariate randomness and random walk strategy

Published: 12 April 2024 Publication History

Abstract

Ensemble clustering algorithms have made significant progress in recent years due to their excellent performance. However, most of these algorithms face two challenges: one is to focus on the selection of subspaces since there is limited discussion on how to construct a potential metric space, the other is to treat basic clustering equally without fully considering the local connection between clusters when constructing the cooperative association matrix. To solve these issues, we propose a weighted ensemble clustering algorithm with multiple randomness and random walk strategy. We define the free exponential similarity kernel to create a diverse set of random metric spaces coupled with random subspaces and use spectral clustering to generate base clustering. Moreover, we use random walk strategy to discover the local connection between clusters and weight the collaborative association matrix. Finally, the collaborative association matrix uses consensus functions based on hierarchical clustering and meta clustering to obtain clustering results. On this basis, two specific ensemble clustering algorithms WECMR-HC and WECMR-MC are proposed. Theoretical analysis and experimental results demonstrate that our proposed algorithm outperforms existing ensemble algorithms.

Highlights

We propose a novel ensemble clustering framework.
We define a diversified random metric space generated by the free exponential similarity kernel.
We use the random walk strategy when weighting the collaborative incidence matrix.

References

[1]
D. Huang, C. Wang, J. Wu, J. Lai, C. Kwoh, Ultra-scalable spectral clustering and ensemble clustering, IEEE Trans. Knowl. Data Eng. 32 (6) (2019) 1212–1226,.
[2]
Y. Lai, S. He, Z. Lin, F. Yang, Q. Zhou, X. Zhou, An adaptive robust semi-supervised clustering framework using weighted consensus of random k k-means ensemble, IEEE Trans. Knowl. Data Eng. 33 (5) (2019) 1877–1890,.
[3]
Y. Shi, Z. Yu, W. Cao, C. Chen, H. Wong, G. Han, Fast and effective active clustering ensemble based on density peak, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2020) 3593–3607,.
[4]
X. Yu, G. Yu, J. Wang, C. Domeniconi, Co-clustering ensembles based on multiple relevance measures, IEEE Trans. Knowl. Data Eng. 33 (4) (2019) 1389–1400,.
[5]
P. Zhou, L. Du, X. Liu, Y. Shen, M. Fan, X. Li, Self-paced clustering ensemble, IEEE Trans. Neural Netw. Learn. Syst. 32 (4) (2020) 1497–1511,.
[6]
X. Ji, S. Liu, L. Yang, W. Ye, P. Zhao, Clustering ensemble based on approximate accuracy of the equivalence granularity, Appl. Soft Comput. 129 (2022),.
[7]
Y. Zhong, H. Wang, W. Yang, L. Wang, T. Li, Multi-objective genetic model for co-clustering ensemble, Appl. Soft Comput. 135 (2023),.
[8]
Z. Tao, H. Liu, S. Li, Z. Ding, Y. Fu, Marginalized multiview ensemble clustering, IEEE Trans. Neural Netw. Learn. Syst. 31 (2) (2019) 600–611,.
[9]
F. Li, Y. Qian, J. Wang, C. Dang, L. Jing, Clustering ensemble based on sample's stability, Artif. Intell. 273 (2019) 37–55,.
[10]
S. Abbasi, S. Nejatian, H. Parvin, V. Rezaie, K. Bagherifard, Clustering ensemble selection considering quality and diversity, Artif. Intell. Rev. 52 (2019) 1311–1340,.
[11]
I. Khan, Z. Luo, A. Shaikh, R. Hedjam, Ensemble clustering using extended fuzzy k-means for cancer data analysis, Expert Syst. Appl. 172 (2021),.
[12]
T. Li, A. Rezaeipanah, E. Din, An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement, J. King Saud. Univ. -Comput. Inf. Sci. 34 (6) (2022) 3828–3842,.
[13]
R. Logesh, V. Subramaniyaswamy, D. Malathi, N. Sivaramakrishnan, V. Vijayakumar, Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method, Neural Comput. Appl. 32 (2020) 2141–2164,.
[14]
D. Huang, C. Wang, J. Lai, C. Kwoh, Toward multidiversified ensemble clustering of high-dimensional data: from subspaces to metrics and beyond, IEEE Trans. Cybern. 52 (11) (2021) 12231–12244,.
[15]
S. Yi, Z. He, X. Jing, Y. Li, Y. Cheung, F. Nie, Adaptive weighted sparse principal component analysis for robust unsupervised feature selection, IEEE Trans. Neural Netw. Learn. Syst. 31 (6) (2019) 2153–2163,.
[16]
Y. Wang, X. Li, K. Wong, Y. Chang, S. Yang, Evolutionary multiobjective clustering algorithms with ensemble for patient stratification, IEEE Trans. Cybern. 52 (10) (2021) 11027–11040,.
[17]
Y. Jia, S. Tao, R. Wang, Y. Wang, Ensemble clustering via co-association matrix self-enhancement, IEEE Trans. Neural Netw. Learn. Syst. (2023) 1–12,.
[18]
Z. Tao, J. Li, H. Fu, Y. Kong, Y. Fu, From ensemble clustering to subspace clustering: cluster structure encoding, IEEE Trans. Neural Netw. Learn. Syst. 34 (5) (2021) 2670–2681,.
[19]
G. He, W. Jiang, R. Peng, M. Yin, M. Han, Soft subspace based ensemble clustering for multivariate time series data, IEEE Trans. Neural Netw. Learn. Syst. 34 (10) (2022) 7761–7774,.
[20]
H. Li, Multivariate time series clustering based on common principal component analysis, Neurocomputing 349 (2019) 239–247,.
[21]
J. Chu, H. Wang, J. Liu, Z. Gong, T. Li, Unsupervised feature learning architecture with multi-clustering integration RBM, IEEE Trans. Knowl. Data Eng. 34 (6) (2020) 3002–3015,.
[22]
N. Ilc, Weighted cluster ensemble based on partition relevance analysis with reduction step, IEEE Access 8 (2020) 113720–113736,.
[23]
M. Sangeetha, R. Kousalya, An optimized weighted consensus clustering with removal of less informative composite clusters, 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2022, pp. 392–399,.
[24]
D. Huang, C. Wang, H. Peng, J. Lai, C. Kwoh, Enhanced ensemble clustering via fast propagation of cluster-wise similarities, IEEE Trans. Syst., Man, Cybern.: Syst. 51 (1) (2018) 508–520,.
[25]
A. Fred, A. Jain, Combining multiple clusterings using evidence accumulation, IEEE Trans. Pattern Anal. Mach. Intell. 27 (6) (2005) 835–850,.
[26]
Y. Yi, L. Jin, H. Yu, H. Luo, F. Cheng, Density sensitive random walk for local community detection, IEEE Access 9 (2021) 27773–27782,.
[27]
C. Li, L. Li, M. Zhong, Application of hierarchical optimal random walk algorithm in data specification of college sports training intelligent platform, 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE, 2022, pp. 1433–1436,.
[28]
X. Cai, D. Huang, Link-based consensus clustering with random walk propagation, Neural Inf. Process.: 28th Int. Conf. (2021) 693–700,.
[29]
C. Yang, Y. Wang, C. Zheng, A random walk based cluster ensemble approach for data integration and cancer subtyping, Genes 10 (1) (2019) 66,.
[30]
C. Xie, X. Wen, F. Meng, H. Pang, Random walk graph auto-encoders with ensemble networks in graph embedding, IEEE Access 11 (2023) 55204–55211,.
[31]
P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Education, India, 2016.
[32]
J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (8) (2000) 888–905,.
[33]
M. Souto, I. Costa, D. Araujo, T. Ludermir, A. Schliep, Clustering cancer gene expression data: a comparative study, BMC Bioinforma. 9 (2008) 1–14,.
[34]
UCI machine learning repository, 〈https://archive.ics.uci.edu〉.
[35]
S. Nene, S. Nayar, H. Murase, Columbia object image library (coil-20), New York, 1996.
[37]
S. Roweis, Handwritten digits. 〈https://cs.nyu.edu/~roweis/data.html〉.
[38]
A. Strehl, J. Ghosh, Cluster ensembles---a knowledge reuse framework for combining multiple partitions, J. Mach. Learn. Res. 3 (2002) 583–617.
[39]
N. Nguyen, R. Caruana, Consensus clusterings, in: Seventh IEEE International Conference on Data Mining (ICDM 2007), IEEE, 2007: pp. 607–612. 〈https://doi.org/10.1109/ICDM.2007.73〉.
[40]
N. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings comparison: is a correction for chance necessary, Proc. 26th Annu. Int. Conf. Mach. Learn. (2009) 1073–1080,.
[41]
A. Fred, A. Jain, Data clustering using evidence accumulation, in: 2002 International Conference on Pattern Recognition, IEEE, 2002: pp. 276–280, https://doi.org/10.1109/ICPR.2002.1047450.
[42]
T. Qiu, Y. Li, Enhancing in-tree-based clustering via distance ensemble and kernelization, Pattern Recognit. 112 (2021),.
[43]
D. Huang, J. Lai, C. Wang, Ensemble clustering using factor graph, Pattern Recognit. 50 (2016) 131–142,.
[44]
J. Zhou, H. Zheng, L. Pan, Ensemble clustering based on dense representation, Neurocomputing 357 (2019) 66–76,.
[45]
H. Liu, J. Wu, T. Liu, D. Tao, Y. Fu, Spectral ensemble clustering via weighted k-means: theoretical and practical evidence, IEEE Trans. Knowl. Data Eng. 29 (5) (2017) 1129–1143,.
[46]
M. Yousefnezhad, D. Zhang, Weighted spectral cluster ensemble, in: 2015 IEEE International Conference on Data Mining, IEEE, 2015, pp. 549–558. 〈https://doi.org/10.1109/ICDM.2015.145〉.
[47]
Z. Tao, H. Liu, S. Li, Y. Fu, Robust spectral ensemble clustering, Proc. 25th ACM Int. Conf. Inf. Knowl. Manag. (2016) 367–376,.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Soft Computing
Applied Soft Computing  Volume 150, Issue C
Jan 2024
1051 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 12 April 2024

Author Tags

  1. Ensemble clustering
  2. Multivariate randomness
  3. Random walk strategy
  4. Local weighting

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media