Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
rapid-communication

Data-driven quadratic stabilization and LQR control of LTI systems

Published: 01 July 2023 Publication History

Abstract

In this paper, we propose a framework to solve the data-driven quadratic stabilization (DDQS) and the data-driven linear quadratic regulator (DDLQR) problems for both continuous and discrete-time systems. Given noisy input/state measurements and a few priors, we aim to find a state feedback controller guaranteed to quadratically stabilize all systems compatible with the a-priori information and the experimental data. In principle, finding such a controller is a non-convex robust optimization problem. Our main result shows that, by exploiting duality, the problem can be recast into a convex, albeit infinite-dimensional, functional Linear Program. To address the computational complexity entailed in solving this problem, we show that a sequence of increasingly tight finite dimensional semi-definite relaxations can be obtained using sum-of-squares and Putinar’s Positivstellensatz arguments. Finally, we show that these arguments can also be used to find controllers that minimize a worst-case (over all plants in the consistency set) closed-loop H 2 cost. The effectiveness of the proposed algorithm is illustrated through comparisons against existing data-driven methods that handle ℓ ∞ bounded noise.

References

[1]
Aubin J.-P., Frankowska H., Set-valued analysis, Springer Science & Business Media, 2009.
[2]
Avis David, Jordan Charles, mplrs: A scalable parallel vertex/facet enumeration code, Mathematical Programming Computation 10 (2) (2018) 267–302.
[3]
Berberich Julian, Scherer Carsten W., Allgöwer Frank, Combining prior knowledge and data for robust controller design, 2020, arXiv preprint arXiv:2009.05253.
[4]
Bisoffi Andrea, De Persis Claudio, Tesi Pietro, Data-driven control via Petersen’s lemma, Automatica 145 (2022).
[5]
Boyd S., Vandenberghe L., Convex optimization, Cambridge University Press, 2004.
[6]
Chen J., Gu G., Control oriented system identification: an H ∞ approach, Wiley & Sons, Inc., 2000.
[7]
Chesi Graziano, LMI techniques for optimization over polynomials in control: a survey, IEEE Transactions on Automatic Control 55 (11) (2010) 2500–2510.
[8]
Dai Tianyu, Sznaier Mario, Data driven robust superstable control of switched systems, IFAC-PapersOnLine 51 (25) (2018) 402–408.
[9]
Dai Tianyu, Sznaier Mario, A moments based approach to designing MIMO data driven controllers for switched systems, in: 2018 IEEE conference on decision and control, IEEE, 2018, pp. 5652–5657.
[10]
Dai Tianyu, Sznaier Mario, Data-driven quadratic stabilization of continuous LTI systems, IFAC-PapersOnLine 53 (2) (2020) 3965–3970.
[11]
De Oliveira Maurício C, Bernussou Jacques, Geromel José C, A new discrete-time robust stability condition, Systems & Control Letters 37 (4) (1999) 261–265.
[12]
De Persis Claudio, Tesi Pietro, On persistency of excitation and formulas for data-driven control, 2019, arXiv preprint arXiv:1903.06842.
[13]
Feron Eric, Balakrishnan Venkataramanan, Boyd Stephen, Ghaoui Laurent El, Numerical methods for H2 related problems, in: American control conference, IEEE, 1992, pp. 2921–2922.
[14]
Khargonekar Pramod P., Petersen Ian R., Zhou Kemin, Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity/control theory, IEEE Transactions on Automatic Control 35 (3) (1990) 356–361.
[15]
Löfberg, Johan (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD conference, Vol. 3. Taipei, Taiwan.
[16]
Mangasarian O.L., Shiau T.-H., Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM Journal on Control and Optimization 25 (3) (1987) 583–595.
[17]
MATLAB, 9.9.0.1524771 (R2020b), The MathWorks Inc., Natick, Massachusetts, 2020.
[18]
MOSEK, The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019, URL http://docs.mosek.com/9.0/toolbox/index.html.
[19]
Putinar Mihai, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal 42 (3) (1993) 969–984.
[20]
Sánchez Peña R., Sznaier M., Robust systems theory and applications, Wiley & Sons, Inc., 1998.
[21]
Scherer Carsten W., Hol Camile W.J., Matrix sum-of-squares relaxations for robust semi-definite programs, Mathematical Programming 107 (1) (2006) 189–211.
[22]
Van Waarde Henk J., Eising Jaap, Trentelman Harry L., Camlibel M. Kanat, Data informativity: a new perspective on data-driven analysis and control, IEEE Transactions on Automatic Control 65 (11) (2020) 4753–4768.
[23]
Vanwaarde Henk J., Camlibel M. Kanat, Mesbahi Mehran, From noisy data to feedback controllers: non-conservative design via a matrix S-lemma, IEEE Transactions on Automatic Control (2020).
[24]
Zhou Kemin, Doyle John Comstock, Essentials of robust control, Vol. 104, Prentice Hall, Upper Saddle River, NJ, 1998.

Cited By

View all
  • (2024)Data-driven output consensus for a class of discrete-time multiagent systems by reinforcement learning techniquesSignal Processing10.1016/j.sigpro.2024.109547223:COnline publication date: 1-Oct-2024
  • (2023)Artificial Neural Network to Estimate Deterministic Indices in Control Loop Performance MonitoringIntelligent Human Computer Interaction10.1007/978-3-031-53830-8_14(139-150)Online publication date: 8-Nov-2023

Index Terms

  1. Data-driven quadratic stabilization and LQR control of LTI systems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Automatica (Journal of IFAC)
        Automatica (Journal of IFAC)  Volume 153, Issue C
        Jul 2023
        485 pages

        Publisher

        Pergamon Press, Inc.

        United States

        Publication History

        Published: 01 July 2023

        Author Tags

        1. Data-driven control
        2. Robust control
        3. Quadratic stability
        4. Semi-definite programming

        Qualifiers

        • Rapid-communication

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 28 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Data-driven output consensus for a class of discrete-time multiagent systems by reinforcement learning techniquesSignal Processing10.1016/j.sigpro.2024.109547223:COnline publication date: 1-Oct-2024
        • (2023)Artificial Neural Network to Estimate Deterministic Indices in Control Loop Performance MonitoringIntelligent Human Computer Interaction10.1007/978-3-031-53830-8_14(139-150)Online publication date: 8-Nov-2023

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media