Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Semantic Approach for Big Data Exploration in Industry 4.0

Published: 15 July 2021 Publication History

Abstract

The growing trends in automation, Internet of Things, big data and cloud computing technologies have led to the fourth industrial revolution (Industry 4.0), where it is possible to visualize and identify patterns and insights, which results in a better understanding of the data and can improve the manufacturing process. However, many times, the task of data exploration results difficult for manufacturing experts because they might be interested in analyzing also data that does not appear in pre-designed visualizations and therefore they must be assisted by Information Technology experts.
In this paper, we present a proposal materialized in a semantic-based visual query system developed for a real Industry 4.0 scenario that allows domain experts to explore and visualize data in a friendly way. The main novelty of the system is the combined use that it makes of captured data that are semantically annotated first, and a 2D customized digital representation of a machine that is also linked with semantic descriptions. Those descriptions are expressed using terms of an ontology, where, among others, the sensors that are used to capture indicators about the performance of a machine that belongs to a Industry 4.0 scenario have been modeled. Moreover, this semantic description allows to: formulate queries at a higher level of abstraction, provide customized graphical visualizations of the results based on the format and nature of the data, and download enriched data enabling further types of analysis.

References

[1]
D. Ciuriak, The economics of data: implications for the data-driven economy, in: Data Governance in the Digital Age, Centre for International Governance Innovation, 2018, Ch. 8.
[2]
European Commission, Towards a thriving data-driven economy, Tech. rep. 2014, https://ec.europa.eu/digital-singlemarket/news/communication-data-driven-economy.
[3]
A. Kusiak, Smart manufacturing, Int. J. Prod. Res. 56 (1–2) (2018) 508–517,.
[4]
N. Bikakis, G. Papastefanatos, O. Papaemmanouil, Big data exploration, visualization and analytics, Big Data Res. 18 (2019),.
[5]
F. Zhou, X. Lin, C. Liu, Y. Zhao, P. Xu, L. Ren, T. Xue, L. Ren, A survey of visualization for smart manufacturing, J. Vis. 22 (2) (2019) 419–435,.
[6]
T. Catarci, M.F. Costabile, S. Levialdi, C. Batini, Visual query systems for databases: a survey, J. Vis. Lang. Comput. 8 (2) (1997) 215–260,.
[7]
A. Haller, K. Janowicz, S.J. Cox, M. Lefrançois, K. Taylor, D. Le Phuoc, J. Lieberman, R. García-Castro, R. Atkinson, C. Stadler, The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation, Semant. Web 10 (1) (2019) 9–32,.
[8]
H. Rijgersberg, M. van Assem, J. Top, Ontology of units of measure and related concepts, Semant. Web 4 (1) (2013) 3–13,.
[9]
V.J. Ramírez-Durán, I. Berges, A. Illarramendi, ExtruOnt: an ontology for describing a type of manufacturing machine for Industry 4.0 systems, Semant. Web 11 (6) (2020) 887–909,.
[10]
I. Berges, V.J. Ramírez-Durán, A. Illarramendi, Facilitating data exploration in Industry 4.0, in: G. Guizzardi, F. Gailly, R.S.P. Maciel (Eds.), Advances in Conceptual Modeling – Proceedings of ER 2019 Workshops FAIR, MREBA, EmpER, MoBiD, OntoCom, and ER Doctoral Symposium Papers, in: Lecture Notes in Computer Science, vol. 11787, Salvador, Brazil, November 4-7, 2019, Springer, 2019, pp. 125–134,.
[11]
J. Rubart, B. Lietzau, P. Söhlke, Analyzing manufacturing data in a digital control room making use of semantic annotations, in: IEEE 14th International Conference on Semantic Computing, IEEE, ICSC 2020, San Diego, CA, USA, February 3-5, 2020, pp. 434–438,.
[12]
D. Chankhihort, S.S. Choi, G.J. Lee, B.M. Im, D. Ahn, E. Choi, A. Nasridinov, S. Kwon, S. Lee, J. Kang, K. Park, K. Yoo, Integrative manufacturing data visualization using calendar view map, in: Eighth International Conference on Ubiquitous and Future Networks, ICUFN 2016, Vienna, Austria, July 5-8, 2016, IEEE, 2016, pp. 114–116,.
[13]
N. Iftikhar, B.P. Lachowicz, A. Madarasz, F.E. Nordbjerg, T. Baattrup-Andersen, K. Jeppesen, Real-time visualization of sensor data in smart manufacturing using lambda architecture, in: S. Hammoudi, C. Quix, J. Bernardino (Eds.), Proceedings of the 9th International Conference on Data Science, Technology and Applications, DATA 2020, Lieusaint, Paris, France, July 7-9, 2020, SciTePress, 2020, pp. 215–222,.
[14]
Lloret-Gazo, J. : A survey on visual query systems in the web era. (extended version), CoRR arXiv:1708.00192 [abs].
[15]
B. Eravci, H. Ferhatosmanoglu, Diversity based relevance feedback for time series search, Proc. VLDB Endow. 7 (2013) 109–120,.
[16]
G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, S. Skiadopoulos, Visual exploration of geolocated time series with hybrid indexing, Big Data Res. 15 (2019),.
[17]
F. Haag, S. Lohmann, S. Bold, T. Ertl, Visual SPARQL querying based on extended filter/flow graphs, in: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, ACM, 2014, pp. 305–312,.
[18]
J.M. Brunetti, R. García, S. Auer, From overview to facets and pivoting for interactive exploration of semantic web data, Int. J. Semantic Web Inf. Syst. 9 (1) (2013) 1–20,.
[19]
A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese, M.G. Skjæveland, D. Hovland, R. Schlatte, S. Brandt, H. Lie, I. Horrocks, OptiqueVQS: a visual query system over ontologies for industry, Semant. Web 9 (5) (2018) 627–660,.
[20]
F. Antoniazzi, F. Viola, RDF graph visualization tools: a survey, in: 23rd Conference of Open Innovations Association, FRUCT 2018, Bologna, Italy, November 13-16, 2018, IEEE, 2018, pp. 25–36,.
[21]
D.V. Camarda, S. Mazzini, A. Antonuccio, LodLive, exploring the Web of data, in: V. Presutti, H.S. Pinto (Eds.), I-SEMANTICS 2012 – 8th International Conference on Semantic Systems, I-SEMANTICS '12, Graz, Austria, September 5-7, 2012, ACM, 2012, pp. 197–200,.
[22]
S. Lohmann, S. Negru, F. Haag, T. Ertl, Visualizing ontologies with VOWL, Semant. Web 7 (2016) 399–419,.
[23]
E. Kharlamov, B.C. Grau, E. Jiménez-Ruiz, S. Lamparter, G. Mehdi, M. Ringsquandl, Y. Nenov, S. Grimm, M. Roshchin, I. Horrocks, Capturing industrial information models with ontologies and constraints, in: The Semantic Web - ISWC 2016 – Proceedings of 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Part II, 2016, pp. 325–343,.
[24]
E. Negri, L. Fumagalli, M. Garetti, L. Tanca, Requirements and languages for the semantic representation of manufacturing systems, Comput. Ind. 81 (C) (2016) 55–66,.
[25]
M. Garetti, L. Fumagalli, P-PSO ontology for manufacturing systems, 14th IFAC Symposium on Information Control Problems in Manufacturing, IFAC Proc. Vol. 45 (6) (2012) 449–456,.
[26]
D.L. Nuñez, M. Borsato, An ontology-based model for prognostics and health management of machines, J. Ind. Inf. Integr. 6 (2017) 33–46,.
[27]
R. Barbau, S. Krima, R. Sudarsan, A. Narayanan, X. Fiorentini, S. Foufou, R.D. Sriram, OntoSTEP: enriching product model data using ontologies, Comput. Aided Des. 44 (6) (2012) 575–590,.
[28]
K. Villalobos, I. Berges, B. Diez, A. Goñi, A. Illarramendi, A multi-services architecture for smart manufacturing scenarios, in: International Conference on Industrial Internet of Things and Smart Manufacturing, Imperial College London, London, United Kingdom, 2018.
[29]
K. Thirunarayan, A.P. Sheth, Semantics-empowered big data processing with applications, AI Mag. 36 (1) (2015) 39–54,.
[30]
M. Golfarelli, S. Rizzi, A model-driven approach to automate data visualization in big data analytics, Inf. Vis. 19 (1) (2019) 24–47,.
[31]
Addlesee, A. (2019): Comparison of linked data triplestores: developing the methodology. https://medium.com/wallscope/comparison-of-linked-data-triplestores-developing-the-methodology-e87771cb3011.
[32]
Addlesee, A. (2019): Comparison of linked data triplestores: a new contender. https://medium.com/wallscope/comparison-of-linked-data-triplestores-a-new-contender-c62ae04901d3.

Cited By

View all
  • (2024)An ontology-based framework for worker’s health reasoning enabled by machine learningComputers and Industrial Engineering10.1016/j.cie.2024.110310193:COnline publication date: 1-Jul-2024
  • (2023)Unlocking the Power of Semantic Interoperability in Industry 4.0: A Comprehensive OverviewKnowledge Graphs and Semantic Web10.1007/978-3-031-47745-4_7(82-96)Online publication date: 13-Nov-2023
  • (2022)Quality Mining in a Continuous Production Line based on an Improved Genetic Algorithm Fuzzy Support Vector Machine (GAFSVM)Computers and Industrial Engineering10.1016/j.cie.2022.108218169:COnline publication date: 1-Jul-2022

Index Terms

  1. A Semantic Approach for Big Data Exploration in Industry 4.0
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Big Data Research
      Big Data Research  Volume 25, Issue C
      Jul 2021
      465 pages
      ISSN:2214-5796
      EISSN:2214-5796
      Issue’s Table of Contents

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 15 July 2021

      Author Tags

      1. Data exploration
      2. Industry 4.0
      3. Ontologies

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)An ontology-based framework for worker’s health reasoning enabled by machine learningComputers and Industrial Engineering10.1016/j.cie.2024.110310193:COnline publication date: 1-Jul-2024
      • (2023)Unlocking the Power of Semantic Interoperability in Industry 4.0: A Comprehensive OverviewKnowledge Graphs and Semantic Web10.1007/978-3-031-47745-4_7(82-96)Online publication date: 13-Nov-2023
      • (2022)Quality Mining in a Continuous Production Line based on an Improved Genetic Algorithm Fuzzy Support Vector Machine (GAFSVM)Computers and Industrial Engineering10.1016/j.cie.2022.108218169:COnline publication date: 1-Jul-2022

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media