Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Intelligent interaction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical Coherence Tomography

Published: 01 October 2019 Publication History

Highlights

Developed semi-automated tools for correcting retinal layer and drusen segmentation.
Constrained shortest path, local smoothing, semi-automated drusen extraction.
Automated proposal of improved segmentations based on 3D context.
Derived and validated uncertainty measures for CNN-based retinal layer segmentation.
Intelligent interaction tools reduce time to 53% (layers)/73% (drusen).

Graphical abstract

Display Omitted

Abstract

Convolutional neural networks (CNNs) represent the state of the art for fully automated medical image segmentation. However, few works have combined CNNs with interactive user feedback in order to verify and, where necessary, correct their results. We present an interactive visual system that achieves this for the specific use case of segmenting drusen, which serve as a biomarker of age related macular degeneration, from Optical Coherence Tomography. Our main idea is to exploit the probabilistic nature of CNN-based segmentation. First, we derive two uncertainty measures from it. We demonstrate that they indicate cases in which automated segmentation is likely to have failed, and that visualizing them makes manual verification and correction more efficient. Second, based on the probabilistic information, we design intelligent tools for segmentation correction, which automatically propose the most likely alternative segmentation in agreement with user-specified constraints. In a small user study, uncertainty visualization and intelligent interaction reduced the time required to correct retinal layer segmentation by around 53% and, for drusen segmentation, even by 73%. In the future, we plan to use our system not only for efficient segmentation correction, but also for rapid creation of larger training sets.

References

[1]
Guo Y., Liu Y., T. Georgiou, M.S. Lew, A review of semantic segmentation using deep neural networks, Int J Multimed Inf Retr 7 (2) (2018) 87–93,.
[2]
G. Litjens, Kooi T., B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, et al., A survey on deep learning in medical image analysis, Med Image Anal 42 (2017) 60–88,.
[3]
M.W. Wintergerst, T. Schultz, J. Birtel, A.K. Schuster, N. Pfeiffer, S. Schmitz-Valckenberg, et al., Algorithms for the automated analysis of age-related macular degeneration biomarkers on optical coherence tomography: a systematic review, Transl Vis Sci Technol 6 (4) (2017) 10,.
[4]
S. Gorgi Zadeh, M. Wintergerst, T. Schultz, Uncertainty-guided semi-automated editing of CNN-based retinal layer segmentations in optical coherence tomography, Proceedings of the visual computing for biology and medicine, 2018, pp. 107–115.
[5]
S.D. Olabarriaga, A.W.M. Smeulders, Interaction in the segmentation of medical images: a survey, Med Image Anal 5 (2) (2001) 127–142,.
[6]
D. Haehn, S. Knowles-Barley, M. Roberts, J. Beyer, N. Kasthuri, J.W. Lichtman, et al., Design and evaluation of interactive proofreading tools for connectomics, IEEE Trans Vis Comput Graph 20 (12) (2014) 2466–2475,.
[7]
W. Valenzuela, S.J. Ferguson, D. Ignasiak, G. Diserens, L. Häni, R. Wiest, et al., FISICO: Fast Image SegmentatIon COrrection, PLoS One 11 (5) (2016) e0156035,.
[8]
F. Heckel, J.H. Moltz, C. Tietjen, H.K. Hahn, Sketch-based editing tools for tumour segmentation in 3d medical images, Comput Graph Forum 32 (8) (2013) 144–157,.
[9]
A. Neumann, C. Lorenz, Statistical shape model based segmentation of medical images, Comput Med Imag Graph 22 (2) (1998) 133–143.
[10]
P. Carpineto, M. Ciancaglini, A. Aharrh-Gnama, D. Cirone, L. Mastropasqua, Custom measurement of retinal nerve fiber layer thickness using stratus oct in normal eyes, Eur J Ophthalmol 15 (3) (2005) 360–366.
[11]
U.E. Wolf-Schnurrbusch, L. Ceklic, C.K. Brinkmann, M.E. Iliev, M. Frey, S.P. Rothenbuehler, et al., Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments, Invest Ophthalmol Vis Sci 50 (7) (2009) 3432–3437.
[12]
M. Mayer, Automated glaucoma detection with optical coherence tomography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2018.
[13]
R. Cárdenes, R. de Luis García, M.B. Cuadra, A multidimensional segmentation evaluation for medical image data, Comput Methods Programs Biomed 96 (2) (2009) 108–124,.
[14]
T. von Landesberger, G.L. Andrienko, N.V. Andrienko, S. Bremm, M. Kirschner, S. Wesarg, et al., Opening up the “black box” of medical image segmentation with statistical shape models, Vis Comput 29 (9) (2013) 893–905,.
[15]
T. von Landesberger, D. Basgier, M. Becker, Comparative local quality assessment of 3D medical image segmentations with focus on statistical shape model-based algorithms, IEEE Trans Vis Comput Graph 22 (12) (2016) 2537–2549,.
[16]
A. Geurts, G. Sakas, A. Kuijper, M. Becker, T. von Landesberger, Visual comparison of 3D medical image segmentation algorithms based on statistical shape models, Proceedings of the international conference on digital human modeling (DHM), LNCS, 9185, Springer, 2015, pp. 336–344,.
[17]
R.G. Raidou, F.J.J. Marcelis, M. Breeuwer, M.E. Gröller, A. Vilanova, H.M.M. van de Wetering, Visual analytics for the exploration and assessment of segmentation errors, Proceedings of the Eurographics workshop on visual computing for biology and medicine, VCBM 16, 2016, pp. 193–202,.
[18]
J.-S. Prassni, T. Ropinski, K. Hinrichs, Uncertainty-aware guided volume segmentation, IEEE Trans Vis Comput Graph 16 (6) (2010) 1358–1365.
[19]
B. Summa, J. Tierny, V. Pascucci, Visualizing the uncertainty of graph-based 2d segmentation with min-path stability, Comput Graph Forum 36 (3) (2017) 133–143,.
[20]
A. Saad, G. Hamarneh, T. Möller, Exploration and visualization of segmentation uncertainty using shape and appearance prior information, IEEE Trans Vis Comput Graph 16 (6) (2010) 1366–1375,.
[21]
Tzeng F.-Y., Ma K.-L., Opening the black box – data driven visualization of neural networks, in: Silva C., Gröller E., Rushmeier H. (Eds.), Proceedings of the IEEE visualization, 2005, pp. 383–390.
[22]
D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing higher-layer features of a deep network, Tech. Rep., University of Montreal, 2009.
[23]
M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, Proceedings of the European conference on computer vision (ECCV), LNCS, 8689, Springer, 2014, pp. 818–833.
[24]
A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2015, pp. 5188–5196.
[25]
J. Yosinski, J. Clune, A.M. Nguyen, T.J. Fuchs, H. Lipson, Understanding neural networks through deep visualization, CoRR (2015).
[26]
P.E. Rauber, S.G. Fadel, A.X. Falcao, A.C. Telea, Visualizing the hidden activity of artificial neural networks, IEEE Trans Vis Comput Graphics 23 (1) (2017) 101–110.
[27]
K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane, D. Fritz, et al., Visualizing dataflow graphs of deep learning models in tensorflow, IEEE Trans Vis Comput Graph 24 (1) (2018) 1–12.
[28]
M. Kahng, P.Y. Andrews, A. Kalro, D.H. Chau, ActiVis: Visual exploration of industry-scale deep neural network models, IEEE Trans Vis Comput Graph 24 (1) (2018) 88–97.
[29]
H. Strobelt, S. Gehrmann, H. Pfister, A.M. Rush, LSTMVis: a tool for visual analysis of hidden state dynamics in recurrent neural networks, IEEE Trans Vis Comput Graph 24 (1) (2018) 667–676.
[30]
Liu M., Shi J., Cao K., Zhu J., Liu S., Analyzing the training processes of deep generative models, IEEE Trans Vis Comput Graph 24 (1) (2018) 77–87.
[31]
Liu M., Shi J., Li Z., Li C., Zhu J., Liu S., Towards better analysis of deep convolutional neural networks, IEEE Trans Vis Comput Graph 23 (1) (2017) 91–100.
[32]
N. Pezzotti, T. Höllt, J.V. Gemert, B.P. Lelieveldt, E. Eisemann, A. Vilanova, DeepEyes: progressive visual analytics for designing deep neural networks, IEEE Trans Vis Comput Graph 24 (1) (2018) 98–108.
[33]
I. Roesch, T. Günther, Visualization of neural network predictions for weather forecasting, in: Hullin M., Klein R., Schultz T., Yao A. (Eds.), Proceedings of the vision, modeling, visualization (VMV), The Eurographics Association, 2017, pp. 61–68.
[34]
K.C. Potter, S. Gerber, E.W. Anderson, Visualization of uncertainty without a mean, IEEE Comput Graph Appl 33 (1) (2013) 75–79,.
[35]
A. Al-Taie, H.K. Hahn, L. Linsen, Uncertainty estimation and visualization in probabilistic segmentation, Comput Graph 39 (2014) 48–59,.
[36]
R.D. Jager, W.F. Mieler, J.W. Miller, Age-related macular degeneration, New Engl J Med 358 (24) (2008) 2606–2617.
[37]
M.D. Abràmoff, M.K. Garvin, M. Sonka, Retinal imaging and image analysis, IEEE Rev Biomed Eng 3 (2010) 169–208.
[38]
S. Gorgi Zadeh, M.W. Wintergerst, V. Wiens, S. Thiele, F.G. Holz, R.P. Finger, et al., CNNs enable accurate and fast segmentation of drusen in optical coherence tomography, Proceedings of the deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, 2017, pp. 65–73.
[39]
S. Apostolopoulos, S.D. Zanet, C. Ciller, S. Wolf, R. Sznitman, Pathological OCT retinal layer segmentation using branch residual u-shape networks, Proceedings of the medical image computing and computer assisted intervention (MICCAI), Part III, 2017, pp. 294–301,.
[40]
L. Fang, Cunefare D., Wang C., R.H. Guymer, Li S., S. Farsiu, Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search, Biomed Opt Express 8 (5) (2017) 2732,.
[41]
J. Hamwood, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, M.J. Collins, Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers, Biomed Opt Express 9 (7) (2018) 3049,.
[42]
Chen Q., Leng T., Zheng L., L. Kutzscher, Ma J., L. de Sisternes, et al., Automated drusen segmentation and quantification in SD-OCT images, Med Image Anal 17 (8) (2013) 1058–1072.
[43]
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI), Springer, 2015, pp. 234–241.
[44]
S. Skiena, Dijkstra’s algorithm, Proceedings of the implementing discrete mathematics: combinatorics and graph theory with mathematica, Addison-Wesley, Reading, MA, 1990, pp. 225–227.
[45]
M.G. Kendall, The treatment of ties in ranking problems, Biometrika 33 (3) (1945) 239–251.
[46]
G. Papandreou, Chen L.-C., K.P. Murphy, A.L. Yuille, Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation, Proceedings of the ieee international conference on computer vision (ICCV), IEEE, 2015, pp. 1742–1750,.

Cited By

View all
  • (2024)Fully-automatic end-to-end approaches for 3D drusen segmentation in Optical Coherence Tomography imagesProcedia Computer Science10.1016/j.procs.2024.09.529246:C(1100-1109)Online publication date: 1-Jan-2024

Index Terms

  1. Intelligent interaction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical Coherence Tomography
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computers and Graphics
          Computers and Graphics  Volume 83, Issue C
          Oct 2019
          122 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 01 October 2019

          Author Tags

          1. Age related macular degeneration (AMD)
          2. Optical Coherence Tomography (OCT)
          3. Drusen segmentation
          4. Retinal layer segmentation
          5. CNNs
          6. Uncertainty visualization

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 12 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Fully-automatic end-to-end approaches for 3D drusen segmentation in Optical Coherence Tomography imagesProcedia Computer Science10.1016/j.procs.2024.09.529246:C(1100-1109)Online publication date: 1-Jan-2024

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media