Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

3D mesh cutting for high quality atlas packing

Published: 01 November 2022 Publication History

Abstract

An efficiently packed, low-distortion parameterization with a short boundary can save a great amount of memory and improve both quality and efficiency of rendering. Existing packing methods begin with an input atlas (or parameterization), but the cuts in the input atlas may be not suitable for a high quality result. We propose a simple yet effective approach to cut an input surface and generate an atlas that comprehensively considers the packing efficiency, the mapping distortion and the boundary length. Viewing the desired cuts on the input mesh as the pullback of a low-distortion mapping from a polysquare boundary, we notice that the above three objectives actually imply a small number of cone singularities with angle deficit of π 2 k, k ∈ Z, and orthogonally intersected short cuts passing through all singularities. Therefore, we first leverage a cross frame-field to identify a set of singularities and cancel some of them to balance their amount and atlas distortion. Then, the singularities remained are heuristically connected by short cuts which intersect with each other nearly orthogonally. Results show that our method produces a low-distortion and polysquare-like atlas with controllable number of singularities. Comparing with other atlas generation methods only focusing on distortion, taking our atlas as the input for the subsequent packing algorithm (Liu et al., 2019) is better than using previous cutting strategies on a benchmark containing 5519 cases, because the conflicts among those desired objectives for packing are alleviated at an early stage.

Highlights

A simple yet effective approach to cut an input surface and generate an atlas.
A cancellation algorithm which balances the amount of singularities and the distortion of atlas.
Short cuts which intersect with each other nearly orthogonally to connect all the singularities together.
Taking our atlas as the input for the subsequent packing algorithm is better than using previous cutting strategies on a benchmark containing 5519 cases.

References

[1]
H.-Y. Liu, X.-M. Fu, C. Ye, S. Chai, L. Liu, Atlas refinement with bounded packing efficiency, ACM Trans. Graph. 38 (2019).
[2]
K. Hormann, K. Polthier, A. Sheffer, Mesh parameterization: theory and practice, in: ACM SIGGRAPH Asia 2008 Courses, SIGGRAPH Asia '08, Association for Computing Machinery, New York, NY, USA, 2008,.
[3]
A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods and their applications, Found. Trends Comput. Graph. Vis. 2 (2006) 105–171.
[4]
M. Li, D.M. Kaufman, V.G. Kim, J. Solomon, A. Sheffer, Optcuts: joint optimization of surface cuts and parameterization, ACM Trans. Graph. 37 (2018).
[5]
T. Zhu, C. Ye, S. Chai, X.-M. Fu, Greedy cut construction for parameterizations, Comput. Graph. Forum 39 (2020) 191–202.
[6]
M. Limper, N. Vining, A. Sheffer, Box cutter: atlas refinement for efficient packing via void elimination, ACM Trans. Graph. 37 (2018).
[7]
F. Knöppel, K. Crane, U. Pinkall, P. Schröder, Globally optimal direction fields, ACM Trans. Graph. 32 (2013).
[8]
J. Palacios, E. Zhang, Rotational symmetry field design on surfaces, ACM Trans. Graph. 26 (2007) 55–es.
[9]
A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, M. Ben-Chen, Directional field synthesis, design, and processing, Comput. Graph. Forum 35 (2016) 545–572.
[10]
D. Bommes, H. Zimmer, L. Kobbelt, Mixed-integer quadrangulation, ACM Trans. Graph. 28 (2009) 1–10.
[11]
K. Crane, M. Desbrun, P. Schröder, Trivial connections on discrete surfaces, Comput. Graph. Forum 29 (2010) 1525–1533.
[12]
M. Tarini, E. Puppo, D. Panozzo, N. Pietroni, P. Cignoni, Simple quad domains for field aligned mesh parametrization, ACM Trans. Graph. 30 (2011) 1–12.
[13]
D. Panozzo, E. Puppo, M. Tarini, O. Sorkine-Hornung, Frame fields: anisotropic and non-orthogonal cross fields, ACM Trans. Graph. 33 (2014).
[14]
N. Farchi, M. Ben-Chen, Integer-only cross field computation, ACM Trans. Graph. 37 (2018).
[15]
X. Gu, S.J. Gortler, H. Hoppe, Geometry images, ACM Trans. Graph. 21 (2002) 355–361.
[16]
A. Sheffer, J.C. Hart Seamster, Inconspicuous low-distortion texture seam layout, in: Proceedings of the Conference on Visualization '02, VIS '02, IEEE Computer Society, USA, 2002, pp. 291–298.
[17]
M. Ben-Chen, C. Gotsman, G. Bunin, Conformal flattening by curvature prescription and metric scaling, Comput. Graph. Forum 27 (2008) 449–458.
[18]
S. Chai, X.-M. Fu, X. Hu, Y. Yang, L. Liu, Sphere-based cut construction for planar parameterizations, Comput. Graph. 74 (2018) 66–75.
[19]
D. Julius, V. Kraevoy, A. Sheffer, D-charts: quasi-developable mesh segmentation, Comput. Graph. Forum 24 (2005) 581–590.
[20]
B. Lévy, S. Petitjean, N. Ray, J. Maillot, Least squares conformal maps for automatic texture atlas generation, ACM Trans. Graph. 21 (2002) 362–371.
[21]
P.V. Sander, S.J. Gortler, J. Snyder, H. Hoppe, Signal-specialized parametrization, in: Proceedings of the 13th Eurographics Workshop on Rendering, EGRW '02, Eurographics Association, Goslar, DEU, 2002, pp. 87–98.
[22]
K. Zhou, J. Synder, B. Guo, H.-Y. Shum, Iso-charts: stretch-driven mesh parameterization using spectral analysis, in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '04, Association for Computing Machinery, New York, NY, USA, 2004, pp. 45–54,.
[23]
R. Poranne, M. Tarini, S. Huber, D. Panozzo, O. Sorkine-Hornung, Autocuts: simultaneous distortion and cut optimization for UV mapping, ACM Trans. Graph. 36 (2017).
[24]
N. Sharp, K. Crane, Variational surface cutting, ACM Trans. Graph. 37 (2018).
[25]
K. Wu, M. Tarini, C. Yuksel, J. Mccann, X. Gao, Wearable 3d machine knitting: automatic generation of shaped knit sheets to cover real-world objects, IEEE Trans. Vis. Comput. Graph. (2021) 1–1.
[26]
M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, in: N.A. Dodgson, M.S. Floater, M.A. Sabin (Eds.), Advances in Multiresolution for Geometric Modelling, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 157–186.
[27]
W.T. Tutte, How to draw a graph, Proc. Lond. Math. Soc. s3–13 (1963) 743–767.
[28]
M. Floater, One-to-one piecewise linear mappings over triangulations, Math. Comput. 72 (2003) 685–696.
[29]
M. Rabinovich, R. Poranne, D. Panozzo, O. Sorkine-Hornung, Scalable locally injective mappings, ACM Trans. Graph. 36 (2017).
[30]
X.-M. Fu, Y. Liu, B. Guo, Computing locally injective mappings by advanced mips, ACM Trans. Graph. 34 (2015).
[31]
A. Shtengel, R. Poranne, O. Sorkine-Hornung, S.Z. Kovalsky, Y. Lipman, Geometric optimization via composite majorization, ACM Trans. Graph. 36 (2017).
[32]
L. Liu, C. Ye, R. Ni, X.-M. Fu, Progressive parameterizations, ACM Trans. Graph. 37 (2018).
[33]
Y. Zhu, R. Bridson, D.M. Kaufman, Blended cured quasi-newton for distortion optimization, ACM Trans. Graph. 37 (2018).
[34]
S.Z. Kovalsky, M. Galun, Y. Lipman, Accelerated quadratic proxy for geometric optimization, ACM Trans. Graph. 35 (2016).
[35]
C. Schüller, L. Kavan, D. Panozzo, O. Sorkine-Hornung, Locally injective mappings, Comput. Graph. Forum 32 (2013) 125–135.
[36]
J. Smith, S. Schaefer, Bijective parameterization with free boundaries, ACM Trans. Graph. 34 (2015).
[37]
Z. Jiang, S. Schaefer, D. Panozzo, Simplicial complex augmentation framework for bijective maps, ACM Trans. Graph. 36 (2017).
[38]
E. Zhang, K. Mischaikow, G. Turk, Feature-based surface parameterization and texture mapping, ACM Trans. Graph. 24 (2005) 1–27.
[39]
M.R. Garey, Computers and Intractability; A Guide to the Theory of NP-Completeness, W. H. Freeman & Co, 1979.
[40]
V.J. Milenkovic, Rotational polygon containment and minimum enclosure using only robust 2d constructions, Comput. Geom. 13 (1999) 3–19.
[41]
T. Nöll, D. Strieker, Efficient packing of arbitrary shaped charts for automatic texture atlas generation, Comput. Graph. Forum 30 (2011) 1309–1317.
[42]
P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, H. Hoppe, Multi-chart geometry images, in: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '03, Eurographics Association, Goslar, DEU, 2003, pp. 146–155.
[43]
C. Zhang, M.-F. Xu, S. Chai, X.-M. Fu, Robust atlas generation via angle-based segmentation, Comput. Aided Geom. Des. 79 (2020).
[44]
M. Campen, D. Zorin, Similarity maps and field-guided t-splines: a perfect couple, ACM Trans. Graph. 36 (2017).
[45]
H.-C. Ebke, M. Campen, D. Bommes, L. Kobbelt, Level-of-detail quad meshing, ACM Trans. Graph. 33 (2014).
[46]
A. Myles, D. Zorin, Global parametrization by incremental flattening, ACM Trans. Graph. 31 (2012).
[47]
N. Sharp, Y. Soliman, K. Crane, Navigating intrinsic triangulations, ACM Trans. Graph. 38 (2019).
[48]
K. Crane, C. Weischedel, M. Wardetzky, The heat method for distance computation, Commun. ACM 60 (2017) 90–99.
[49]
T.K. Dey, F. Fan, Y. Wang, An efficient computation of handle and tunnel loops via Reeb graphs, ACM Trans. Graph. 32 (2013).
[50]
A. Sheffer, Spanning tree seams for reducing parameterization distortion of triangulated surfaces, in: Proceedings SMI. Shape Modeling International 2002, IEEE, 2002, pp. 61–272.
[51]
B.O. Community, Blender - a 3D Modelling and Rendering Package, Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018, http://www.blender.org.

Cited By

View all
  • (2023)Learning Based 2D Irregular Shape PackingACM Transactions on Graphics10.1145/361834842:6(1-16)Online publication date: 5-Dec-2023

Index Terms

  1. 3D mesh cutting for high quality atlas packing
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Computer Aided Geometric Design
      Computer Aided Geometric Design  Volume 99, Issue C
      Nov 2022
      95 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 November 2022

      Author Tags

      1. Atlas packing
      2. Surface cut
      3. Parameterization
      4. Cone singularity

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Learning Based 2D Irregular Shape PackingACM Transactions on Graphics10.1145/361834842:6(1-16)Online publication date: 5-Dec-2023

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media