Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

High-order explicit local time-stepping methods for damped wave equations

Published: 01 February 2013 Publication History

Abstract

Locally refined meshes impose severe stability constraints on explicit time-stepping methods for the numerical simulation of time dependent wave phenomena. Local time-stepping methods overcome that bottleneck by using smaller time-steps precisely where the smallest elements in the mesh are located. Starting from classical Adams-Bashforth multi-step methods, local time-stepping methods of arbitrarily high order of accuracy are derived for damped wave equations. When combined with a finite element discretization in space with an essentially diagonal mass matrix, the resulting time-marching schemes are fully explicit and thus inherently parallel. Numerical experiments with continuous and discontinuous Galerkin finite element discretizations corroborate the expected rates of convergence and illustrate the usefulness of these local time-stepping methods.

References

[1]
Ciarlet, P., The Finite Element Method for Elliptic Problems. 1978. North-Holland, Amsterdam.
[2]
Hughes, T., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. 2000. Dover Publications.
[3]
Cohen, G., Joly, P., Roberts, J. and Tordjman, N., Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. v38. 2047-2078.
[4]
Giraldo, F.X. and Taylor, M.A., A diagonal-mass-matrix triangular-spectral-element method based on cubature points. J. Engrg. Math. v56. 307-322.
[5]
TVB Runge-Kutta local projection discontinuous Galerkin method for conservation laws II: general framework. Math. Comp. v52. 411-435.
[6]
Discontinuous finite element methods for acoustic and elastic wave problems. Contemp. Math. v329. 271-282.
[7]
Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. v27. 5-40.
[8]
Grote, M.J., Schneebeli, A. and Schötzau, D., Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. v44. 2408-2431.
[9]
Grote, M.J., Schneebeli, A. and Schötzau, D., Interior penalty discontinuous Galerkin method for Maxwell's equations: energy norm error estimates. J. Comput. Appl. Math. v204. 375-386.
[10]
Nodal Discontinuous Galerkin Methods. 2008. Springer.
[11]
Collino, F., Fouquet, T. and Joly, P., A conservative space-time mesh refinement method for the 1-D wave equation. I. Construction. Numer. Math. v95. 197-221.
[12]
Collino, F., Fouquet, T. and Joly, P., Conservative space-time mesh refinement method for the FDTD solution of Maxwell's equations. J. Comput. Phys. v211. 9-35.
[13]
Dolean, V., Fahs, H., Fezoui, L. and Lanteri, S., Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. v229. 512-526.
[14]
Piperno, S., Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems. M2AN Math. Model. Numer. Anal. v40. 815-841.
[15]
Montseny, E., Pernet, S., Ferriéres, X. and Cohen, G., Dissipative terms and local time-stepping improvements in a spatial high order discontinuous Galerkin scheme for the time-domain Maxwell's equations. J. Comput. Phys. v227. 6795-6820.
[16]
A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations. Int. J. Numer. Modell. Electron. Networks Devices Fields. v22. 77-103.
[17]
Dumbser, M., Käser, M. and Toro, E., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-V. Local time stepping and p-adaptivity. Geophys. J. Int. v171. 695-717.
[18]
Ezziani, A. and Joly, P., Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems. J. Comput. Appl. Math. v234. 1886-1895.
[19]
Constantinescu, E. and Sandu, A., Multirate time-stepping methods for hyperbolic conservation laws. J. Sci. Comput. v33. 239-278.
[20]
Constantinescu, E. and Sandu, A., Multirate explicit Adams methods for time integration of conservation laws. J. Sci. Comput. v38. 229-249.
[21]
Diaz, J. and Grote, M.J., Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. v31. 1985-2014.
[22]
Grote, M.J. and Mitkova, T., Explicit local time-stepping for Maxwell's equations. J. Comput. Appl. Math. v234. 3283-3302.
[23]
Hochbruck, M. and Ostermann, A., Exponential multistep methods of Adams-type. BIT. v51. 889-908.
[24]
Lions, J.L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol. I. 1972. Springer-Verlag.
[25]
Cohen, G., High-Order Numerical Methods for Transient Wave Equations. 2002. Springer-Verlag.
[26]
Cohen, G., Joly, P. and Tordjman, N., Construction and analysis of higher order finite elements with mass lumping for wave equation. In: Proceedings of Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, SIAM. pp. 152-160.
[27]
Cohen, G., Joly, P. and Tordjman, N., Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elem. Anal. Des. v16. 329-336.
[28]
Baker, and Douglas, V., The effect of quadrature errors on finite element approximations for second order hyperbolic equations. SIAM J. Numer. Anal. v13. 577-598.
[29]
Buffa, A., Perugia, I. and Warburton, T., The mortar-discontinuous Galerkin method for the 2D Maxwell eigenproblem. J. Sci. Comput. v40. 86-114.
[30]
Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. v39. 1749-1779.
[31]
C. Agut, J. Diaz, Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation, INRIA Research Report 7494, 2010.
[32]
Grote, M.J., Schneebeli, A. and Schötzau, D., Interior penalty discontinuous Galerkin method for Maxwell's equations: optimal L2-norm error estimates. IMA J. Numer. Anal. v28. 440-468.
[33]
Grote, M.J. and Schötzau, D., Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J. Sci. Comput. v40. 257-272.
[34]
Hairer, E., Nørsett, S. and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems. 2000. Springer.

Cited By

View all
  • (2015)High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshesJournal of Computational Physics10.1016/j.jcp.2015.02.052291:C(120-150)Online publication date: 15-Jun-2015
  • (2015)Efficient multiple time-stepping algorithms of higher orderJournal of Computational Physics10.1016/j.jcp.2015.01.018285:C(133-148)Online publication date: 15-Mar-2015
  • (2015)Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale mediaJournal of Computational Physics10.1016/j.jcp.2014.10.047281:C(669-689)Online publication date: 15-Jan-2015
  • Show More Cited By
  1. High-order explicit local time-stepping methods for damped wave equations

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational and Applied Mathematics
        Journal of Computational and Applied Mathematics  Volume 239, Issue
        February, 2013
        430 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 February 2013

        Author Tags

        1. 65N30
        2. Damped waves
        3. Discontinuous Galerkin methods
        4. Explicit time integration
        5. Finite element methods
        6. Mass lumping
        7. Time dependent waves

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 09 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2015)High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshesJournal of Computational Physics10.1016/j.jcp.2015.02.052291:C(120-150)Online publication date: 15-Jun-2015
        • (2015)Efficient multiple time-stepping algorithms of higher orderJournal of Computational Physics10.1016/j.jcp.2015.01.018285:C(133-148)Online publication date: 15-Mar-2015
        • (2015)Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale mediaJournal of Computational Physics10.1016/j.jcp.2014.10.047281:C(669-689)Online publication date: 15-Jan-2015
        • (2015)Numerical comparisons of high-order nonlinear solvers for the transient Navier-Stokes equations based on homotopy and perturbation techniquesJournal of Computational and Applied Mathematics10.1016/j.cam.2014.12.008289:C(356-370)Online publication date: 1-Dec-2015
        • (2014)High-Order Local Time Stepping on Moving DG Spectral Element MeshesJournal of Scientific Computing10.1007/s10915-013-9730-z58:1(176-202)Online publication date: 1-Jan-2014

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media