Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A new deflated block GCROT( m, k ) method for the solution of linear systems with multiple right-hand sides

Published: 01 July 2016 Publication History

Abstract

Linear systems with multiple right-hand sides arise in many applications. To solve such systems efficiently, a new deflated block GCROT( m, k ) method is explored in this paper by exploiting a modified block Arnoldi deflation. Incorporating this modified block Arnoldi deflation, the new algorithm can address the possible linear dependence at each iteration during the block Arnoldi procedure and reduces expensive computational operations. Moreover, as a block version of GCROT( m, k ), the new method inherits the property of easy operability. Finally, some numerical examples also illustrate the effectiveness of the proposed method.

References

[1]
P. Soudais, Iterative solution methods of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies, IEEE Trans. Antennas and Propagation, 42 (1994) 954-959.
[2]
R.W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Comput. Appl. Math., 123 (2000) 395-421.
[3]
J.C.R. Bloch, S. Heybrock, A nested Krylov subspace method to compute the sign function of large complex matrices, Comput. Phys. Comm., 182 (2011) 878-889.
[4]
T. Sakurai, H. Tadano, Y. Kuramashi, Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD, Comput. Phys. Comm., 181 (2010) 113-117.
[5]
D.P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29 (1980) 293-322.
[6]
G. Li, A block variant of the GMRES method on massively parallel processors, Parallel Comput., 23 (1997) 1005-1019.
[7]
Z. Bai, D. Day, Q. Ye, ABLE.: An adaptive block Lanczos method for non-Hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1999) 1060-1082.
[8]
A. Nikishin, A. Yeremin, Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers I: general iterative scheme, SIAM J. Math. Anal., 16 (1995) 1135-1153.
[9]
V. Simoncini, A stabilized QMR version of block BICG, SIAM J. Matrix Anal. Appl., 18 (1997) 419-434.
[10]
B. Vital, Etude de quelques méthodes de résolution de probl e ¿ eme linéaire de grande taille sur multiprocesseur, University of Rennes, France, 1990.
[11]
V. Simoncini, E. Gallopoulos, Convergence properties of block GMRES and matrix polynomials, Linear Algebra Appl., 247 (1996) 97-119.
[12]
H.-L. Liu, B.-J. Zhong, Simpler block GMRES for nonsymmetric systems with multiple right-hand sides, Electron. Trans. Numer. Anal., 30 (2008) 1-9.
[13]
R.B. Morgan, Restarted block GMRES with deflation of eigenvalues, Appl. Numer. Math., 54 (2005) 222-236.
[14]
M. Robbé, M. Sadkane, Exact and inexact breakdowns in the block GMRES method, Linear Algebra Appl., 419 (2006) 265-285.
[15]
R.D. da Cunha, D. Becker, Dynamic block GMRES: an iterative method for block linear systems, Adv. Comput. Math., 27 (2007) 423-448.
[16]
H. Calandra, S. Gratton, J. Langou, X. Pinel, X. Vasseur, Flexible vatiants of block restarted GMRES methods with application to geophysis, SIAM J. Sci. Comput., 34 (2012) 714-736.
[17]
J. Meng, P.-Y. Zhu, H.-B. Li, X.-M. Gu, A deflated block flexible GMRES-DR method for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal., 41 (2014) 478-496.
[18]
R. Freund, M. Malhotra, A Block-QMR algorithm for non-hermitian linear systems with multiple right-hand sides, Linear Algebra Appl., 254 (1997) 119-157.
[19]
A. El Guennouni, K. Jbilou, H. Sadok, A block version of BICGSTAB for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal., 16 (2003) 129-142.
[20]
A. El Guennouni, K. Jbilou, H. Sadok, The block Lanczos method for linear systems with multiple right-hand sides, Appl. Numer. Math., 51 (2004) 243-256.
[21]
Ronald B. Morgan, Dywayne A. Nicely, Restarting the nonsymmetric Lanczos algorithm for eigenvalues and linear equations including multiple right-hand sides, SIAM J. Sci. Comput., 33 (2011) 3037-3056.
[22]
K. Jbilou, H. Sadok, A. Tinzefte, Oblique projection methods for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal., 20 (2005) 119-138.
[23]
S. Karimi, F. Toutounian, The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides, Appl. Math. Comput., 177 (2006) 852-862.
[24]
L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S.-L. Zhang, A block IDR(s) method of nonsymmetric linear systems with multiple right-hand side, J. Comput. Appl. Math., 235 (2011) 4095-4106.
[25]
M.H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: an introduction, in: Modern Mathematical Models, Methods and Algorithms for Real World Systems, Anamaya Publishers, New Delhi, India, 2007, pp. 420-447.
[26]
E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67 (1996) 15-41.
[27]
E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., 36 (1999) 864-889.
[28]
Jason E. Hicken, David W. Zingg, A simplified and flexible variant of GCROT for solving nonsysmmetric linear systems, SIAM J. Sci. Comput., 32 (2010) 1672-1694.
[29]
J. Meng, P.-Y. Zhu, H.-B. Li, A block GCROT(m,k) method for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 255 (2014) 544-554.
[30]
J. Langou, Iterative methods for solving linear systems with multiple right-hand sides, CERFACS, 2003.
[31]
H. Calandra, S. Gratton, R. Lago, X. Vasseur, L.M. Carvalho, A modified block flexible GMRES method with deflation at each iteration for the solution of non-Hermitian linear systems with multiple right-hand sides, SIAM J. Sci. Comput., 35 (2013) 345-367.
[32]
R. Yu, Eric De Sturler, D.D. Johnson, A Block iterative solver for complex non-hermitian systems applied to Lerge-scale. electronic-structure ccalculations. Technical Report, 2002.
[33]
Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[34]
National Institute of Standards and Technology: Matrix Market. http://math.nist.gov/Matrix-Market.
[35]
T.A. Davis, Y.F. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software (2015).
[36]
Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation, Appl. Numer. Math., 50 (2004) 409-425.
[37]
B. Carpentieri, Y.F. Jing, T.Z. Huang, The BICOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 33 (2011) 3020-3036.
[38]
Na Li, Y. Saad, Crout versions of ILU factorization with pivoting for sparse symmetric matrices, Electron. Trans. Numer. Anal., 20 (2005) 75-85.
[39]
Na Li, Y. Saad, E. Chow, Crout versions of ILU for general sparse matrices, SIAM J. Sci. Comput., 25 (2003) 716-728.

Cited By

View all
  • (2016)Block iterative methods and recycling for improved scalability of linear solversProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3014904.3014927(1-14)Online publication date: 13-Nov-2016
  1. A new deflated block GCROT( m , k ) method for the solution of linear systems with multiple right-hand sides

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational and Applied Mathematics
    Journal of Computational and Applied Mathematics  Volume 300, Issue C
    July 2016
    448 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 July 2016

    Author Tags

    1. 65F12
    2. 65L05
    3. 65N22
    4. Deflated block GCROT( m
    5. Modified block Arnoldi deflation
    6. Multiple right-hand sides
    7. Truncation
    8. k )

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)Block iterative methods and recycling for improved scalability of linear solversProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3014904.3014927(1-14)Online publication date: 13-Nov-2016

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media