Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A limited memory quasi-Newton trust-region method for box constrained optimization

Published: 01 September 2016 Publication History

Abstract

By means of Wolfe conditions strategy, we propose a quasi-Newton trust-region method to solve box constrained optimization problems. This method is an adequate combination of the compact limited memory BFGS and the trust-region direction while the generated point satisfies the Wolfe conditions and therefore maintains a positive-definite approximation to the Hessian of the objective function. The global convergence and the quadratic convergence of this method are established under suitable conditions. Finally, we compare our algorithms (IWTRAL and IBWTRAL) with an active set trust-region algorithm (ASTRAL) Xu and Burke (2007) on the CUTEst box constrained test problems presented by Gould et al. (2015). Numerical results show that the presented method is competitive and totally interesting for solving box constrained optimization.

References

[1]
C.G. Broyden, J.E. Dennis, J.J. Moré, On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl., 12 (1973) 233-246.
[2]
A.R. Conn, N.I.M. Gould, Ph.L. Toint, Convergence of quasi-Newton matrices generated by the symmetric rank one update, Math. Program. A, 50 (1991) 177-195.
[3]
J.E. Dennis, J.J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977) 46-89.
[4]
D.H. Li, M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001) 15-35.
[5]
A.R. Conn, N.I.M. Gould, Ph.L. Toint, Trust Region Methods, Society for Industrial and Applied Mathematics, SIAM, Philadelphia, 2000.
[6]
J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, 2006.
[7]
E.S. Levitin, B.T. Polyak, Constrained minimization methods, USSR Comput. Math. Math. Phys., 6 (1966) 1-50.
[8]
J.J. Moré, G. Toraldo, Algorithms for bound constrained quadratic programming problems, Numer. Math., 55 (1989) 377-400.
[9]
A.R. Conn, N.I.M. Gould, Ph.L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988) 433-460.
[10]
A.R. Conn, N.I.M. Gould, Ph.L. Toint, Testing a class of methods for solving minimization problems with simple bounds on the variables, Math. Comp., 50 (1988) 399-430.
[11]
J.V. Burke, J.J. Moré, On the identification of active constrained, SIAM J. Numer. Anal., 25 (1988) 1197-1211.
[12]
R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Stat. Comput., 16 (1995) 1190-1208.
[13]
C.J. Lin, J.J. Moré, Newton's method for large bound-constrained optimization problems, SIAM J. Optim., 9 (1999) 1100-1127.
[14]
L. Xu, J.V. Burke, An Active Set ¿ ∞ -trust Region Algorithm for Box Constrained Optimization, Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A, 2007.
[15]
W. Cheng, A subspace modified PRP method for large-scale nonlinear box-constrained optimization, Numer. Funct. Anal. Optim., 33 (2012) 1372-1385.
[16]
L. Sun, G. He, Y. Wang, C. Zhou, An accurate active set Newton algorithm for large scale bound constrained optimization, Appl. Math., 56 (2011) 297-314.
[17]
X. Wang, Y.X. Yuan, A trust region method based on a new affine scaling technique for simple bounded optimization, Optim. Methods Softw., 28 (2013) 871-888.
[18]
G. Yuan, X. Lu, An active set limited memory BFGS algorithm for bound constrained optimization, Appl. Math. Model., 35 (2011) 3561-3573.
[19]
G. Yuan, Z. Wei, M. Zhang, An active-set projected trust region algorithm for box constrained optimization problems, J. Syst. Sci. Complex., 28 (2015) 1128-1147.
[20]
R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[21]
J.V. Burke, J.J. Moré, G. Toraldo, Convergence properties of trust region methods for linear and convex constraints, Math. Program., 47 (1990) 305-336.
[22]
L. Kaufman, Reduced storage, Quasi-Newton trust region approaches to function optimization, SIAM J. Optim., 10 (1999) 56-69.
[23]
J.B. Erway, R.F. Marcia, On efficiently computing the eigenvalues of limited-memory Quasi-Newton matrices, SIAM J. Matrix Anal. Appl., 36 (2015) 1338-1359.
[24]
D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989) 503-528.
[25]
J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980) 773-782.
[26]
M. Ahookhosh, K. Amini, M. Kimiaei, A globally convergent trust-region method for large-scale symmetric nonlinear systems, Numer. Funct. Anal. Optim., 36 (2015) 830-855.
[27]
M. Ahookhosh, K. Amini, M. Kimiaei, M.R. Peyghami, A limited memory trust-region method with adaptive radius for large-scale unconstrained optimization, Bull. Iranian Math. Soc. (2016).
[28]
H. Esmaeili, M. Kimiaei, An efficient implementation of a trust region method for box constrained optimization, J. Appl. Math. Comput., 48 (2015) 495-517.
[29]
R.H. Byrd, J. Nocedal, R. Schnabel, Representation of quasi-Newton matrices and their use in limited memory methods, Math. Program., 63 (1994) 129-156.
[30]
Ph.L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in: Sparse Matrices and their Uses, Academic Press, New York, 1982, pp. 57-87.
[31]
J. Nocedal, Y.X. Yuan, Combining Trust-Region and Line-Search Techniques. Optimization Technology Center mar OTC 98/04 1998.
[32]
E.M. Gertz, Combination Trust-Region Line-Search Methods for Unconstrained Optimization, University of California, San Diego, 1999.
[33]
E.M. Gertz, A quasi-Newton trust-region method, Math. Program. Ser. A, 100 (2004) 447-470.
[34]
M.J.D. Powell, A new algorithm for unconstrained optimization, in: Nonlinear Programming, Academic Press, 1970.
[35]
S.W. Thomas, Sequential Estimation Techniques for Quasi-Newton Algorithms, Cornell University, 1975.
[36]
D.F. Shanno, K.H. Phua, Matrix conditioning and non-linear optimization, Math. Program., 14 (1978) 149-160.
[37]
E.M. Simantiraki, D.F. Shanno, An infeasible-interior-point method for linear complementarity problems, SIAM J. Optim., 7 (1997) 620-640.
[38]
N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEst: a Constrained and Unconstrained Testing Environment with safe threads, Comput. Optim. Appl., 60 (2015) 545-557.
[39]
E. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002) 201-213.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics  Volume 303, Issue C
September 2016
248 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 September 2016

Author Tags

  1. Constrained optimization
  2. Limited memory quasi-Newton
  3. Line-search
  4. Theoretical convergence
  5. Trust-region framework
  6. Wolfe conditions

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media