Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An L p- primal–dual weak Galerkin method for div–curl systems

Published: 01 April 2023 Publication History
  • Get Citation Alerts
  • Abstract

    This paper presents a new L p-primal–dual weak Galerkin (PDWG) finite element method for the div–curl system with the normal boundary condition for p > 1. Two crucial features for the proposed L p-PDWG finite element scheme are as follows: (1) it offers an accurate and reliable numerical solution to the div–curl system under the low W α, p-regularity (α > 0) assumption for the exact solution; (2) it offers an effective approximation of the normal harmonic vector fields on domains with complex topology. An optimal order error estimate is established in the L q-norm for the primal variable where 1 p + 1 q = 1. A series of numerical experiments are presented to demonstrate the performance of the proposed L p-PDWG algorithm.

    References

    [1]
    Li J., Huang Y., Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer, 2013.
    [2]
    Nicolaides R., Wu X., Covolume solutions of three-dimensional div–curl equations, SIAM J. Numer. Anal. 34 (1997) 2195–2203.
    [3]
    Bochev P.B., Peterson K., Siefert C.M., Analysis and computation of compatible least-squares methods for div–curl equations, SIAM J. Numer. Anal. 49 (2011) 159–181.
    [4]
    Bensow R., Larson M.G., Discontinuous least-squares finite element method for the div–curl problem, Numer. Math. 101 (2005) 601–617.
    [5]
    Bossavit A., Computational Electromagnetism, Academic Press, San Diego, 1998.
    [6]
    Nicolaides R.A., Direct discretization of planar div–curl problems, SIAM J. Numer. Anal. 29 (1992) 32–56.
    [7]
    Delcourte S., Domelevo K., Omnes P., A discrete duality finite volume approach to Hodge decomposition and div–curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal. 45 (2007) 1142–1174.
    [8]
    Copeland D.M., Gopalakrishnan J., Pasciak J.E., A mixed method for axisymmetric div–curl systems, Math. Comp. 77 (2008) 1941–1965.
    [9]
    Brezzi R., Buffa A., Innovative mimetic discretizations for electromagnetic problems, J. Comput. Appl. Math. 234 (2010) 1980–1987.
    [10]
    Lipnikov K., Manzini G., Brezzi F., Buffa A., The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes, J. Comput. Phys. 230 (2011) 305–328.
    [11]
    Wang C., Wang J., Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput. 68 (2016) 1144–1171.
    [12]
    Li J., Ye X., Zhang S., A weak Galerkin least-squares finite element method for div–curl systems, J. Comput. Phys. 363 (2018) 79–86.
    [13]
    Y. Liu, J. Wang, A primal–dual weak Galerkin method for div–curl systems with low-regularity solutions, arXiv preprint arXiv:2003.11795v2.
    [14]
    S. Cao, C. Wang, J. Wang, A new numerical method for div–curl Systems with Low Regularity Assumptions, arXiv preprint arXiv:2101.03466.
    [15]
    Cao W., Wang C., Applied Numerical Mathematics 162 (2021) 171–191.
    [16]
    Li D., Wang C., Wang J., Primal–dual weak galerkin finite element methods for linear convection equations in non-divergence form, Journal of Computational and Applied Mathematics 412 (2022) 114313.
    [17]
    Wang C., A new primal–dual weak Galerkin finite element method for ill-posed elliptic Cauchy problems, J. Comput. Appl. Math. (2019).
    [18]
    Wang C., Wang J., A primal–dual finite element method for first-order transport problems, J. Comput. Phys. 417 (2020).
    [19]
    Wang C., Wang J., A primal–dual weak galerkin finite element method for second order elliptic equations in non-divergence form, Math. Comp. 87 (2018) 515–545.
    [20]
    Wang C., Wang J., A primal–dual weak galerkin finite element method for Fokker–Planck type equations, SIAM J. Numer. Anal 58 (5) (2020) 2632–2661.
    [21]
    Wang C., Wang J., Primal–dual weak galerkin finite element methods for elliptic cauchy problems, Comput. Math. Appl. 79 (3) (2020) 746–763.
    [22]
    Wang C., Zikatanov L., Low regularity primal–dual weak galerkin finite element methods for convection–diffusion equations, Journal of Computational and Applied Mathematics 394 (2021) 113543.
    [23]
    Cao W., Wang C., Wang J., An L p-primal-dual weak galerkin method for convection-diffusion equations, Journal of Computational and Applied Mathematics 419 (2023) 114698.
    [24]
    Ciarlet P.G., The Finite Element Method for Elliptic Problems, North-Holland, 1978.
    [25]
    Girault V., Raviart P.-A., Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer-Verlag Berlin Heidelberg, 1986.
    [26]
    Wang J., Ye X., A weak galerkin mixed finite element method for second-order elliptic problems, Math. Comp. 83 (2014) 2101–2126.
    [27]
    Vogel C., Oman M., Iterative methods for total variation denoising, SIAM J. Sci. Comput. 17 (1996) 227–238.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational and Applied Mathematics
    Journal of Computational and Applied Mathematics  Volume 422, Issue C
    Apr 2023
    746 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 April 2023

    Author Tags

    1. primary
    2. secondary

    Author Tags

    1. Finite element methods
    2. Weak Galerkin methods
    3. Primal–dual weak Galerkin
    4. Div–curl system

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media