Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

High-order asymptotic expansions of Gaussian quadrature rules with classical and generalized weight functions

Published: 15 December 2023 Publication History

Abstract

Gaussian quadrature rules are a classical tool for the numerical approximation of integrals with smooth integrands and positive weight functions. We derive and explicitly list asymptotic expressions for the points and weights of Gaussian quadrature rules for three general classes of positive weight functions: analytic functions on a bounded interval with algebraic singularities at the endpoints, analytic weight functions on the halfline with exponential decay at infinity and an algebraic singularity at the finite endpoint, and analytic functions on the real line with exponential decay in both directions at infinity. The results include the Gaussian rules of classical orthogonal polynomials (Legendre, Jacobi, Laguerre and Hermite) as special cases. Explicit expressions for these cases are included in the appendix. We present experiments indicating the range of the number of points at which these expressions achieve high precision. We provide an algorithm that can compute arbitrarily many terms in these expansions for the classical cases, and many though not all terms for the generalized cases.

Highlights

Gaussian quadrature rules can be computed efficiently from asymptotic expansions.
Generalized weight functions include all classical orthogonal polynomials as special cases.
Extensions of Riemann-Hilbert analyses are validated.

References

[1]
Opsomer P., Asymptotics for orthogonal polynomials and high-frequency scattering problems, (Ph.D. thesis) KU Leuven, 2018.
[2]
Davis P.J., Rabinowitz P., Numerical Integration, Blaisdell publishing company, 1967.
[3]
Hildebrand F.B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.
[4]
Golub G.H., Welsch J.H., Calculation of Gauss quadrature rules, Math. Comp. 23 (106) (1969) 221–230.
[5]
Gautschi W., Orthogonal Polynomials, Oxford Science Publications (reprint), 2010.
[6]
Glaser A., Liu X., Rokhlin V., A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput. 29 (4) (2007) 1420–1438.
[7]
Bogaert I., Iteration-free computation of Gauss–Legendre quadrature nodes and weights, SIAM J. Sci. Comput. 36 (3) (2014) A1008–A1026.
[8]
Bogaert I., Michiels B., Fostier J., O ( 1 ) computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing, SIAM J. Sci. Comput. 34 (3) (2012) C83–C101.
[9]
Bremer J., On the numerical calculation of the roots of special functions satisfying second order ordinary differential equations, SIAM J. Sci. Comput. 39 (1) (2016) A55–A82.
[10]
Gil A., Segura J., Temme N., Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures, Stud. Appl. Math. 140 (2018) 298–332.
[11]
Gil A., Segura J., Temme N.M., Non-iterative computation of Gauss-Jacobi quadrature, SIAM J. Sci. Comput. 41 (2019) A668–A693.
[12]
Hale N., Townsend A., Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights, SIAM J. Sci. Comput. 35 (2013) A652–A672.
[13]
Olver S., Trogdon T., A Riemann–Hilbert approach to Jacobi operators and Gaussian quadrature, IMA J. Numer. Anal. 36 (1) (2016) 174–196.
[14]
Trogdon T., Olver S., Riemann-Hilbert Problems, their Numerical Solution and the Computation of Nonlinear Special Functions, SIAM, Philadelphia, 2016.
[15]
Bremer J., Yang H., Fast algorithms for Jacobi expansions via nonoscillatory phase functions, IMA J. Numer. Anal. 40 (3) (2020) 2019–2051.
[16]
Gil A., Segura J., Temme N.M., Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures, Numer. Math. 143 (2019) 649–682.
[17]
Gil A., Segura J., Temme N.M., Fast and reliable high-accuracy computation of Gauss–Jacobi quadrature, Numer. Alg. 87 (2021) 1391–1419.
[18]
Townsend A., The race to compute high order Gauss–Legendre quadrature, SIAM News 48 (2) (2015) 1.
[19]
Gil A., Segura J., Temme N.M., Asymptotic computation of classical orthogonal polynomials, in: Marcellán F., Huertas E.J. (Eds.), Orthogonal Polynomials: Current Trends and Applications, Springer International Publishing, Cham, 2021, pp. 215–236.
[20]
Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., The Riemann-Hilbert approach to strong asymptotics of orthogonal polynomials on [ − 1, 1 ], Adv. Math. 188 (2004) 337–398.
[21]
Vanlessen M., Strong asymptotics of laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx. 25 (2007) 125–175.
[22]
F. Johansson, Efficient implementation of elementary functions in the medium-precision range, in: 22nd International Symposium on Symbolic and Algebraic Computation, 2015, pp. 83–89.
[23]
Deift P., Orthogonal Polynomials and Random Matrix Theory: A Riemann-Hilbert Perspective, American Mathematical Society, 2000.
[24]
Deaño A., Huybrechs D., Opsomer P., Construction and implementation of asymptotic expansions for Jacobi-type orthogonal polynomials, Adv. Comput. Math. 42 (4) (2016) 791–822.
[25]
Huybrechs D., Opsomer P., Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials, IMA J. Numer. Anal. 38 (3) (2018) 1085–1118.
[26]
Bosbach C., Gawronski W., Strong asymptotics for laguerre polynomials with varying weights, J. Comput. Appl. Math. 99 (1998) 77–89.
[27]
Kuijlaars A.B.J., Martínez-Finkelshtein A., Strong asymptotics for Jacobi polynomials with varying nonstandard parameters, J. Anal. Math. 94 (2004) 195–234.
[28]
Kuijlaars A., McLaughlin K.-R., Riemann-Hilbert analysis for Laguerre polynomials with large negative parameter, Lecture Notes in Math. 1 (1) (2001) 205–233.
[29]
Kuijlaars A., McLaughlin K.-R., Asymptotic zero behavior of Laguerre polynomials with negative parameter, Constr. Approx. 20 (4) (2004) 497–523.
[30]
Atia M., Martínez-Finkelshtein A., Martínez-González P., Thabet F., Quadratic differentials and asymptotics of laguerre polynomials with varying complex parameters, J. Math. Anal. Appl. 416 (1) (2014) 52–80.
[31]
The University of Oxford, the Chebfun Developers, Chebfun—numerical computing with functions, 2017, URL http://www.chebfun.org/.
[32]
Deift P., Zhou X., A steepest descent method for oscillatory Riemann–Hilbert problems, Bull. Amer. Math. Soc. 26 (1) (1992) 119–124.
[33]
Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992) 395–430.
[34]
NIST digital library of mathematical functions, 2016, http://dlmf.nist.gov/, Online companion to [40].
[35]
Tricomi F., Sul comportamento asintotico dei polinomi di laguerre, Ann. Mat. Pura Appl. 28 (4) (1949) 263–289.
[36]
[37]
Townsend A., Trogdon T., Olver S., Fast computation of Gauss quadrature nodes and weights on the whole real line, IMA J. Numer. Anal. 36 (1) (2016) 337–358.
[38]
Gatteschi L., Pittaluga G., An asymptotic expansion for the zeros of Jacobi polynomials, Teubner-Texte Math. 79 (1985) 70–86.
[39]
Szegö G., Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.
[40]
NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, 2010, Print companion to [34].
[41]
Hahn E., Asymptotik bei Jacobi-polynomen und Jacobi-funktionen, Math. Z. 171 (1980) 201–226.
[42]
Baratella P., Gatteschi L., The bounds for the error term of an asymptotic approximation of Jacobi polynomials, Orth. Poly. Appl. Lect. Not. Math. 1329 (1988) 203–221.
[43]
Gil A., Segura J., Temme N., Efficient computation of Laguerre polynomials, Comput. Phys. Comm. 210 (2017) 124–131.
[44]
Gatteschi L., On the zeros of Jacobi polynomials and bessel functions, in: International Conference on Special Functions: Theory and Computation, Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), Turin, 1985, pp. 149–177.
[45]
Tricomi F., Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica, Ann. Mat. Pura Appl. 26 (4) (1947) 283–300.
[46]
Gatteschi L., Asymptotics and bounds for the zeros of Laguerre polynomials: a survey, J. Comput. Appl. Math. 144 (2002) 7–27.
[47]
Deaño A., Huertas E.J., Marcellán F., Strong and ratio asymptotics for Laguerre polynomials revisited, J. Math. Anal. Appl. 403 (2013) 477–486.
[48]
Dunster T.M., Gil A., Segura J., Uniform asymptotic expansions for Laguerre polynomials and related confluent hypergeometric functions, Adv. Comput. Math. 44 (2018) 1441–1474.

Cited By

View all

Index Terms

  1. High-order asymptotic expansions of Gaussian quadrature rules with classical and generalized weight functions
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Computational and Applied Mathematics
          Journal of Computational and Applied Mathematics  Volume 434, Issue C
          Dec 2023
          448 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 15 December 2023

          Author Tags

          1. 65D30
          2. 42C05

          Author Tags

          1. Gaussian quadrature
          2. asymptotic expansions
          3. Riemann-Hilbert analysis

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 20 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media