Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Tent-pitcher spacetime discontinuous Galerkin method for one-dimensional linear hyperbolic and parabolic PDEs

Published: 15 October 2023 Publication History

Abstract

We present a spacetime DG method for 1D spatial domains and three linear hyperbolic, damped hyperbolic, and parabolic PDEs. The latter two correspond to Maxwell-Cattaneo-Vernotte (MCV) and Fourier heat conduction problems. The method is called the tent-pitcher spacetime DG method (tpSDG) due to its resemblance to the causal spacetime DG method (cSDG) wherein the solution advances in time by pitching spacetime patches. The tpSDG method extends the applicability of such methods from hyperbolic to parabolic and hyperbolic PDEs. For problems with a spatially uniform mesh, a transfer matrix approach is derived wherein the inflow, boundary, and source term values are mapped to the solution coefficient and output values. This resembles a finite difference scheme, but with grid points at the Gauss points of the spatial elements and arbitrarily tunable order of accuracy in spacetime. The spectral stability analysis of the method provides stability correction factors for the parabolic case. Numerical examples demonstrate the applicability of the method to problems with heterogeneous material properties.

Highlights

Extended spacetime tent-pitcher methods from hyperbolic to hyperbolic-parabolic PDEs.
Transfer matrices relate inflow and outflow solutions of a patch at the Gauss points.
Polynomial order-independent stability limit of tent-pitcher method is shown for wave equation.
The stability limit for parabolic heat conduction is obtained using the transfer matrices.
The transfer matrix method advances the solution of 1D uniform grids with tunable order.

References

[1]
Jan S. Hesthaven, Tim Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Science & Business Media, 2007.
[2]
Béatrice Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, 2008.
[3]
Bernardo Cockburn, Chi-Wang Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (3) (2001) 173–261.
[4]
Bernardo Cockburn, George E. Karniadakis, Chi-Wang Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, Springer Science & Business Media, 2012.
[5]
Chi-Wang Shu, Discontinuous Galerkin method for time-dependent problems: survey and recent developments, in: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, 2014, pp. 25–62.
[6]
Janivita Joto Sudirham, Jacobus J.W. van der Vegt, Rudolf M.J. van Damme, Space–time discontinuous Galerkin method for advection–diffusion problems on time-dependent domains, Appl. Numer. Math. 56 (12) (2006) 1491–1518.
[7]
Christiaan M. Klaij, Jaap J.W. van der Vegt, Harmen van der Ven, Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput. Phys. 217 (2) (2006) 589–611.
[8]
Sander Rhebergen, Bernardo Cockburn, Jaap J.W. Van Der Vegt, A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations, J. Comput. Phys. 233 (2013) 339–358.
[9]
Miloslav Feistauer, Jaroslav Hajek, Karel vadlenka, Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems, Appl. Math. 52 (3) (2007) 197–233.
[10]
Miloslav Feistauer, Vaclav Kucera, Karel Najzar, Jaroslava Prokopova, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math. 117 (2) (2011) 251–288.
[11]
Jan Cesenek, Miloslav Feistauer, Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion, SIAM J. Numer. Anal. 50 (3) (2012) 1181–1206.
[12]
Bo Wang, Ziqing Xie, Zhimin Zhang, Space-time discontinuous Galerkin method for Maxwell equations in dispersive media, Acta Math. Sci. 34 (5) (2014) 1357–1376.
[13]
Tamás L. Horváth, Sander Rhebergen, An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier–Stokes equations on moving domains, J. Comput. Phys. 417 (2020).
[14]
M. Lilienthal, S.M. Schnepp, T. Weiland, Non-dissipative space-time hp-discontinuous Galerkin method for the time-dependent Maxwell equations, J. Comput. Phys. 275 (2014) 589–607.
[15]
Jonas D. De Basabe, Mrinal K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping, Geophys. J. Int. 181 (1) (2010) 577–590.
[16]
T. Schwartzkopff, C.D. Munz, E.F. Toro. ADER, A high-order approach for linear hyperbolic systems in 2D, J. Sci. Comput. (17) (2002) 231–240.
[17]
T. Schwartzkopff, M. Dumbser, C.-D. Munz, Fast high order ADER schemes for linear hyperbolic equations, J. Comput. Phys. 197 (2) (2004) 532–539.
[18]
M. Dumbser, C.-D. Munz, ADER discontinuous Galerkin schemes for aeroacoustics, C. R. Acad. Sci., Sér. IIb, Méc. 333 (9) (2005) 683–687.
[19]
M. Dumbser, C.-D. Munz, Building blocks for arbitrary high order discontinuous Galerkin schemes, J. Sci. Comput. 27 (1–3) (2006) 215–230.
[20]
G.R. Richter, An explicit finite element method for the wave equation, Appl. Numer. Math. 16 (1–2) (1994) 65–80.
[21]
Richard S. Falk, Gerard R. Richter, Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (3) (1999) 935–952.
[22]
Jeff Erickson, Damrong Guoy, A. Üngör, J. Sullivan, Building spacetime meshes over arbitrary spatial domains, in: Proceedings of the 11th International Meshing Roundtable, 2002, pp. 391–402.
[23]
Reza Abedi, Shuo-Heng Chung, Jeff Erickson, Yong Fan, Michael Garland, Damrong Guoy, Robert Haber, John M. Sullivan, Shripad Thite, Yuan Zhou, Spacetime meshing with adaptive refinement and coarsening, in: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG '04, Brooklyn, New York, USA, June 9-11 2004, ACM, 2004, pp. 300–309.
[24]
Reza Abedi, Robert B. Haber, Shripad Thite, Jeff Erickson, An h–adaptive spacetime–discontinuous Galerkin method for linearized elastodynamics, Eur. J. Comput. Mech. 15 (6) (2006) 619–642.
[25]
Reza Abedi, Shuo-Heng Chung, Morgan A. Hawker, Jayandran Palaniappan, Robert B. Haber, Modeling evolving discontinuities with spacetime discontinuous Galerkin methods, in: IUTAM Symposium on Discretization Methods for Evolving Discontinuities, in: IUTAM Bookseries, vol. 5, IUTAM, Springer, 2007, pp. 59–87.
[26]
Reza Abedi, Robert B. Haber, Philip L. Clarke, Effect of random defects on dynamic fracture in quasi-brittle materials, Int. J. Fract. 208 (1–2) (2017) 241–268.
[27]
Jay Gopalakrishnan, Peter Monk, Paulina Sepúlveda, A tent pitching scheme motivated by Friedrichs theory, Comput. Math. Appl. 70 (5) (2015) 1114–1135.
[28]
Hélène Barucq, Henri Calandra, Julien Diaz, Elvira Shishenina, Space-time Trefftz-discontinuous Galerkin approximation for elasto-acoustics, PhD thesis Inria Bordeaux Sud-Ouest, 2017, UPPA (LMA-Pau);Total E&P.
[29]
Andrea Moiola, Ilaria Perugia, A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation, Numer. Math. 138 (2) (2018) 389–435.
[30]
Hélène Barucq, Henri Calandra, Julien Diaz, Elvira Shishenina, Space–time Trefftz-DG approximation for elasto-acoustics, Appl. Anal. 99 (5) (2020) 747–760.
[31]
Ilaria Perugia, Joachim Schöberl, Paul Stocker, Christoph Wintersteiger, Tent pitching and Trefftz-DG method for the acoustic wave equation, Comput. Math. Appl. 79 (10) (2020) 2987–3000.
[32]
Dow Drake, Jay Gopalakrishnan, Joachim Schöberl, Christoph Wintersteiger, Convergence analysis of some tent-based schemes for linear hyperbolic systems, Math. Comput. 91 (334) (2022) 699–733.
[33]
Claes Johnson, Uno Nävert, Juhani Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng. 45 (1–3) (1984) 285–312.
[34]
Carlo Cattaneo, Sur une forme de l'equation de la chaleur eliminant la paradoxe d'une propagation instantantee, C. R. Acad. Sci. 247 (1958) 431–433.
[35]
Pierre Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, C. R. Acad. Sci. 246 (1958) 3154.
[36]
Scott T. Miller, Robert B. Haber, A spacetime discontinuous Galerkin method for hyperbolic heat conduction, Comput. Methods Appl. Mech. Eng. 198 (2) (2008) 194–209.
[37]
J. Palaniappan, Robert B. Haber, R.L. Jerrard, A spacetime discontinuous Galerkin method for scalar conservation laws, Comput. Methods Appl. Mech. Eng. 193 (2004) 3607–3631.
[38]
Reza Abedi, Robert B. Haber, Boris Petracovici, A spacetime discontinuous Galerkin method for elastodynamics with element-level balance of linear momentum, Comput. Methods Appl. Mech. Eng. 195 (2006) 3247–3273.
[39]
Raj Kumar Pal, Reza Abedi, Amit Madhukar, Robert B. Haber, Adaptive spacetime discontinuous Galerkin method for hyperbolic advection-diffusion with a non-negativity constraint, Int. J. Numer. Methods Eng. 105 (13) (2016) 963–989.
[40]
R. Abedi, S. Mudaliar, An asynchronous spacetime discontinuous Galerkin finite element method for time domain electromagnetics, J. Comput. Phys. 351 (Supplement C) (2017) 121–144.
[41]
Reza Abedi, Robert B. Haber, Riemann solutions and spacetime discontinuous Galerkin method for linear elastodynamic contact, Comput. Methods Appl. Mech. Eng. 270 (2014) 150–177.
[42]
Reza Abedi, Robert B. Haber, Spacetime simulation of dynamic fracture with crack closure and frictional sliding, Adv. Model. Simul. Eng. Sci. 5 (1) (2018) 22. Equal contribution authorship.
[43]
Bernardo Cockburn, Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (6) (1998) 2440–2463.
[44]
C.W. Shu, Different formulations of the discontinuous Galerkin method for the viscous terms, in: Z.-C. Shi, M. Mu, W. Xue, J. Zou (Eds.), Advances in Scientific Computing, 2001.
[45]
Robert M. Kirby, George Em Karniadakis, Selecting the numerical flux in discontinuous Galerkin methods for diffusion problems, J. Sci. Comput. 22 (1) (2005) 385–411.
[46]
Charles Hirsch, Numerical Computation of Internal & External Flows: Fundamentals of Numerical Discretization, John Wiley & Sons, Inc., 1988.
[47]
Frieder Lörcher, Gregor Gassner, Claus-Dieter Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys. 227 (11) (2008) 5649–5670.
[48]
He Yang, Fengyan Li, Jianxian Qiu, Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods, J. Sci. Comput. 55 (3) (2013) 552–574.
[49]
D. Sarmany, M.A. Botchev, J.J.W. van der Vegt, Dispersion and dissipation error in high-order Runge-Kutta discontinuous Galerkin discretisations of the Maxwell equations, J. Sci. Comput. 33 (1) (2007) 47–74.
[50]
Richard Courant, Kurt Friedrichs, Hans Lewy, Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann. 100 (1) (1928) 32–74.
[51]
S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001) 89–112.
[52]
A. Taube, M. Dumbser, C.-D. Munz, R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, Int. J. Numer. Model. 22 (1) (2009) 77–103.
[53]
Shi Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, in: Lecture Notes for Summer School on“Methods and Models of Kinetic Theory”(M&MKT), Porto Ercole (Grosseto, Italy), 2010, pp. 177–216.
[54]
V. Vinduja, Trefftz-DG Methods and Tent-Pitcher Algorithm for Spacetime Integration of Wave Problems, PhD thesis 2022.
[55]
G.F. Carey, M. Tsai, Hyperbolic heat transfer with reflection, Numer. Heat Transf., Part A, Appl. 5 (3) (1982) 309–327.
[56]
J. Palaniappan, S.T. Miller, R.B. Haber, Sub-cell shock capturing and spacetime discontinuity tracking for nonlinear conservation laws, Int. J. Numer. Methods Fluids 57 (9) (2008) 1115–1135.

Index Terms

  1. Tent-pitcher spacetime discontinuous Galerkin method for one-dimensional linear hyperbolic and parabolic PDEs
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computers & Mathematics with Applications
          Computers & Mathematics with Applications  Volume 148, Issue C
          Oct 2023
          339 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 15 October 2023

          Author Tags

          1. Discontinuous Galerkin
          2. Spacetime
          3. Parabolic
          4. Transfer matrix
          5. Spectral stability

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Nov 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media