Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

When game theory meets satellite communication networks: : A survey

Published: 25 June 2024 Publication History

Abstract

Satellite communication networks have been considered an integral part of B5G and 6G networks to achieve global coverage and enhanced Internet services. However, the integration of satellite and terrestrial networks also brings many challenges, including the explosion of management complexity, the limited resource in satellite nodes, and the strategic behavior among network participants. To solve these challenges, game theory has emerged as a potential solution for rapidly evolving satellite communication networks. While there are some surveys discussing game theory in various networking scenarios, there is a lack of surveys targeting game theory-based solutions in satellite communication networks. To fill in this research gap, the objective and research motivation of this study are to summarize and present a comprehensive and up-to-date literature review of recent studies applying game theory to various applications in satellite networks. Both cooperative and non-cooperative games are covered, with a total number of fourteen different game models. Based on the review of existing studies, research challenges and opportunities are further proposed to inspire future research directions. To the best of our knowledge, this paper is the first comprehensive survey focusing on the application of game theory to satellite communication networks.

References

[1]
Guidotti A., Cioni S., Colavolpe G., Conti M., Foggi T., Mengali A., Montorsi G., Piemontese A., Vanelli-Coralli A., Architectures, standardisation, and procedures for 5G satellite communications: A survey, Comput. Netw. 183 (2020).
[2]
Cheng N., He J., Yin Z., Zhou C., Wu H., Lyu F., Zhou H., Shen X., 6G service-oriented space-air-ground integrated network: A survey, Chin. J. Aeronaut. (2021).
[3]
Ray P.P., A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction, J. King Saud Univ.-Comput. Inf. Sci. 34 (9) (2022) 6949–6976.
[4]
F. Michel, M. Trevisan, D. Giordano, O. Bonaventure, A first look at starlink performance, in: Proceedings of the 22nd ACM Internet Measurement Conference, 2022, pp. 130–136.
[5]
Chen X., Feng Z., Wei Z., Zhang P., Yuan X., Code-division OFDM joint communication and sensing system for 6G machine-type communication, IEEE Internet Things J. 8 (15) (2021) 12093–12105.
[6]
Akhtar M.W., Hassan S.A., TaNTIN: Terrestrial and non-terrestrial integrated networks-A collaborative technologies perspective for beyond 5G and 6G, Internet Technol. Lett. (2021).
[7]
Cui H., Zhang J., Geng Y., Xiao Z., Sun T., Zhang N., Liu J., Wu Q., Cao X., Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture and challenges, China Commun. 19 (2) (2022) 90–108.
[8]
Luong N.C., Hoang D.T., Wang P., Niyato D., Kim D.I., Han Z., Data collection and wireless communication in internet of things (IoT) using economic analysis and pricing models: A survey, IEEE Commun. Surv. Tutor. 18 (4) (2016) 2546–2590.
[9]
Chi C., Wang Y., Tong X., Siddula M., Cai Z., Game theory in internet of things: A survey, IEEE Internet Things J. (2021).
[10]
Luong N.C., Wang P., Niyato D., Wen Y., Han Z., Resource management in cloud networking using economic analysis and pricing models: A survey, IEEE Commun. Surv. Tutor. 19 (2) (2017) 954–1001.
[11]
Habib M.A., Moh S., Game theory-based routing for wireless sensor networks: A comparative survey, Appl. Sci. 9 (14) (2019) 2896.
[12]
Sun Z., Liu Y., Wang J., Li G., Anil C., Li K., Guo X., Sun G., Tian D., Cao D., Applications of game theory in vehicular networks: A survey, IEEE Commun. Surv. Tutor. (2021).
[13]
Singh U., Ramaswamy A., Dua A., Kumar N., Tanwar S., Sharma G., Davidson I.E., Sharma R., Coalition games for performance evaluation in 5G and beyond networks: A survey, IEEE Access 10 (2022) 15393–15420.
[14]
Luong N.C., Hoang D.T., Wang P., Niyato D., Han Z., Applications of economic and pricing models for wireless network security: A survey, IEEE Commun. Surv. Tutor. 19 (4) (2017) 2735–2767.
[15]
Shakarami A., Shahidinejad A., Ghobaei-Arani M., A review on the computation offloading approaches in mobile edge computing: A g ame-theoretic perspective, Softw. - Pract. Exp. 50 (9) (2020) 1719–1759.
[16]
Caso G., Alay Ö., Ferrante G.C., De Nardis L., Di Benedetto M.-G., Brunstrom A., User-centric radio access technology selection: A survey of game theory models and multi-agent learning algorithms, IEEE Access 9 (2021) 84417–84464.
[17]
Moura J., Hutchison D., Game theory for multi-access edge computing: Survey, use cases, and future trends, IEEE Commun. Surv. Tutor. 21 (1) (2018) 260–288.
[18]
Mkiramweni M.E., Yang C., Li J., Zhang W., A survey of game theory in unmanned aerial vehicles communications, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3386–3416.
[19]
Gupta R., Gupta J., Future generation communications with game strategies: A comprehensive survey, Comput. Commun. (2022).
[20]
Tinh B.T., Nguyen L.D., Kha H.H., Duong T.Q., Practical optimization and game theory for 6G ultra-dense networks: Overview and research challenges, IEEE Access (2022).
[21]
Li X., Yao R., Fan Y., Wang P., Qi N., Miridakis N.I., Tsiftsis T.A., Secure spectrum-energy efficiency tradeoff based on stackelberg game in a two-way relay cognitive satellite terrestrial network, IEEE Wirel. Commun. Lett. (2022).
[22]
Barrueco J., Montalban J., Iradier E., Angueira P., Constellation design for future communication systems: A comprehensive survey, IEEE Access (2021).
[23]
Yan X., Xiao H., An K., Zheng G., Chatzinotas S., Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users, IEEE Syst. J. 14 (3) (2019) 3343–3350.
[24]
Fu S., Gao J., Zhao L., Integrated resource management for terrestrial-satellite systems, IEEE Trans. Veh. Technol. 69 (3) (2020) 3256–3266.
[25]
Fan K., Feng B., Zhang X., Zhang Q., Network selection based on evolutionary game and deep reinforcement learning in space-air-ground integrated network, IEEE Trans. Netw. Sci. Eng. 9 (3) (2022) 1802–1812.
[26]
Masroor R., Naeem M., Ejaz W., Resource management in UAV-assisted wireless networks: An optimization perspective, Ad Hoc Netw. 121 (2021).
[27]
Xu Z., Tang N., Xu C., Cheng X., Data science: connotation, methods, technologies, and development, Data Sci. Manage. 1 (1) (2021) 32–37.
[28]
Schröder T., Schulz M., Monitoring machine learning models: a categorization of challenges and methods, Data Sci. Manage. 5 (3) (2022) 105–116.
[29]
Jiang W., Cellular traffic prediction with machine learning: A survey, Expert Syst. Appl. (2022).
[30]
Pugliese R., Regondi S., Marini R., Machine learning-based approach: Global trends, research directions, and regulatory standpoints, Data Sci. Manage. 4 (2021) 19–29.
[31]
Jiang W., Internet traffic prediction with deep neural networks, Internet Technol. Lett. 5 (2) (2022).
[32]
Jiang W., Internet traffic matrix prediction with convolutional LSTM neural network, Internet Technol. Lett. 5 (2) (2022).
[33]
Fang X., Feng W., Chen Y., Ge N., Zhang Y., Joint communication and sensing toward 6G: Models and potential of using MIMO, IEEE Internet Things J. (2022).
[34]
Nguyen H.X., Trestian R., To D., Tatipamula M., Digital twin for 5G and beyond, IEEE Commun. Mag. 59 (2) (2021) 10–15.
[35]
Mach P., Becvar Z., Mobile edge computing: A survey on architecture and computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656.
[36]
Li C., Zhang Y., Xie R., Hao X., Huang T., Integrating edge computing into low earth orbit satellite networks: Architecture and prototype, IEEE Access 9 (2021) 39126–39137.
[37]
Tong M., Wang X., Li S., Peng L., Joint offloading decision and resource allocation in mobile edge computing-enabled satellite-terrestrial network, Symmetry 14 (3) (2022) 564.
[38]
Peng Y., Dong T., Gu R., Guo Q., Yin J., Liu Z., Zhang T., Ji Y., A review of dynamic resource allocation in integrated satellite and terrestrial networks, in: 2018 International Conference on Networking and Network Applications (NaNA), IEEE, 2018, pp. 127–132.
[39]
Jia M., Zhang X., Sun J., Gu X., Guo Q., Intelligent resource management for satellite and terrestrial spectrum shared networking toward B5G, IEEE Wirel. Commun. 27 (1) (2020) 54–61.
[40]
He M., Gu W., Kong Y., Zhang L., Spanos C.J., Mosalam K.M., Causalbg: Causal recurrent neural network for the blood glucose inference with IoT platform, IEEE Internet Things J. 7 (1) (2019) 598–610.
[41]
Yuan Z., Jia G., Profiling the digital divide of the elderly based on Internet big data: evidence from China, Data Sci. Manage. 3 (2021) 33–43.
[42]
Shang B., Yi Y., Liu L., Computing over space-air-ground integrated networks: Challenges and opportunities, IEEE Netw. 35 (4) (2021) 302–309.
[43]
Sharma P.K., Upadhyay P.K., da Costa D.B., Bithas P.S., Kanatas A.G., Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial systems with secondary network selection, IEEE Trans. Wireless Commun. 16 (10) (2017) 6586–6601.
[44]
Ji S., Sheng M., Zhou D., Bai W., Cao Q., Li J., Flexible and distributed mobility management for integrated terrestrial-satellite networks: challenges, architectures, and approaches, IEEE Netw. 35 (4) (2021) 73–81.
[45]
Jain S., Pawar P.M., Muthalagu R., Hybrid intelligent intrusion detection system for internet of things, Telemat. Inform. Rep. 8 (2022).
[46]
Pampapathi B., Guptha N., Hema M., Towards an effective deep learning-based intrusion detection system in the internet of things, Telemat. Inform. Rep. 7 (2022).
[47]
Guo H., Li J., Liu J., Tian N., Kato N., A survey on space-air-ground-sea integrated network security in 6G, IEEE Commun. Surv. Tutor. 24 (1) (2021) 53–87.
[48]
Sun L., Zhang H., Fang C., Data security governance in the era of big data: status, challenges, and prospects, Data Sci. Manage. 2 (2021) 41–44.
[49]
Zou Y., Zhu J., Wang X., Hanzo L., A survey on wireless security: Technical challenges, recent advances, and future trends, Proc. IEEE 104 (9) (2016) 1727–1765.
[50]
Han C., Niu Y., Cross-layer anti-jamming scheme: A hierarchical learning approach, IEEE Access 6 (2018) 34874–34883.
[51]
Kellerer W., Kalmbach P., Blenk A., Basta A., Reisslein M., Schmid S., Adaptable and data-driven softwarized networks: Review, opportunities, and challenges, Proc. IEEE 107 (4) (2019) 711–731.
[52]
Zhang P., Wang C., Kumar N., Zhang W., Liu L., Dynamic virtual network embedding algorithm based on graph convolution neural network and reinforcement learning, IEEE Internet Things J. (2021).
[53]
Zhang P., Gan P., Kumar N., Jiang C., Liu F., Zhang L., Survivable virtual network embedding algorithm considering multiple node failure in IIoT environment, J. Netw. Comput. Appl. (2022).
[54]
Nash J.F. Jr., The bargaining problem, Econometrica: J. Econometric Soc. (1950) 155–162.
[55]
Guan Z., Yuan D., Zhang H., Ding L., Cooperative bargaining solution for efficient and fair spectrum management in cognitive wireless networks, Int. J. Commun. Syst. 27 (11) (2014) 3441–3459.
[56]
Chen Y., Ai B., Niu Y., Guan K., Han Z., Resource allocation for device-to-device communications underlaying heterogeneous cellular networks using coalitional games, IEEE Trans. Wireless Commun. 17 (6) (2018) 4163–4176.
[57]
Jiang H., Niu Y., Zhang J., Ai B., Zhong Z., Coalition game based full-duplex concurrent scheduling in millimeter wave wireless backhaul network, China Commun. 16 (2) (2019) 59–75.
[58]
Zhu P., Bao J., Zhang L., Li J., A pilot allocation algorithm based on coalitional game theory for distributed MIMO systems, IEEE Access 7 (2019) 105996–106001.
[59]
Zhang Y., Pan M., Song L., Dawy Z., Han Z., A survey of contract theory-based incentive mechanism design in wireless networks, IEEE Wirel. Commun. 24 (3) (2017) 80–85.
[60]
Li M., Zhang Y., Wang L., Song M., Han Z., Incentive design for collaborative jamming using contract theory in physical layer security, in: 2016 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2016, pp. 1–6.
[61]
Gale D., Shapley L.S., College admissions and the stability of marriage, Amer. Math. Monthly 69 (1) (1962) 9–15.
[62]
Pham Q.-V., Leanh T., Tran N.H., Park B.J., Hong C.S., Decentralized computation offloading and resource allocation for mobile-edge computing: A matching game approach, IEEE Access 6 (2018) 75868–75885.
[63]
Gu B., Zhou Z., Task offloading in vehicular mobile edge computing: A matching-theoretic framework, IEEE Veh. Technol. Mag. 14 (3) (2019) 100–106.
[64]
Gu Y., Cai L.X., Pan M., Song L., Han Z., Exploiting the stable fixture matching game for content sharing in D2D-based LTE-V2X communications, in: 2016 IEEE Global Communications Conference, GLOBECOM, IEEE, 2016, pp. 1–6.
[65]
Gu Y., Saad W., Bennis M., Debbah M., Han Z., Matching theory for future wireless networks: Fundamentals and applications, IEEE Commun. Mag. 53 (5) (2015) 52–59.
[66]
Myerson R.B., Satterthwaite M.A., Efficient mechanisms for bilateral trading, J. Econ. Theory 29 (2) (1983) 265–281.
[67]
Isaacs R., Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, Courier Corporation, 1999.
[68]
He Y., Zhang M., Yang X., Sun Q.T., Luo J., Yu Y., The intelligent offense and defense mechanism of Internet of vehicles based on the differential Game-IP hopping, IEEE Access 8 (2020) 115217–115227.
[69]
Du J., Jiang C., Benslimane A., Guo S., Ren Y., SDN-based resource allocation in edge and cloud computing systems: An evolutionary stackelberg differential game approach, IEEE/ACM Trans. Netw. 30 (4) (2022) 1613–1628.
[70]
Li F., Lam K.-Y., Jia M., Zhao K., Li X., Wang L., Spectrum optimization for satellite communication systems with heterogeneous user preferences, IEEE Syst. J. 14 (2) (2019) 2187–2191.
[71]
Wang L., Lam K.-Y., Xiong M., Li F., Liu X., Wang J., Spectrum pricing for cognitive radio networks with user’s stochastic distribution, Wirel. Netw. 25 (2019) 2091–2099.
[72]
Li F., Sheng Z., Hua J., Wang L., Preference-based spectrum pricing in dynamic spectrum access networks, IEEE Trans. Serv. Comput. 11 (6) (2016) 922–935.
[73]
Li F., Lam K.-Y., Li X., Liu X., Wang L., Leung V.C., Dynamic spectrum access networks with heterogeneous users: how to price the spectrum?, IEEE Trans. Veh. Technol. 67 (6) (2018) 5203–5216.
[74]
Monderer D., Shapley L.S., Potential games, Games Econ. Behav. 14 (1) (1996) 124–143.
[75]
Liu Y., Wang S., Huang J., Yang F., A computation offloading algorithm based on game theory for vehicular edge networks, in: 2018 IEEE International Conference on Communications, ICC, IEEE, 2018, pp. 1–6.
[76]
Li S., Huang J., Hu J., Cheng B., Qoe-deer: A qoe-aware decentralized resource allocation scheme for edge computing, IEEE Trans. Cogn. Commun. Netw. 8 (2) (2021) 1059–1073.
[77]
Gao A., Wang Q., Liang W., Ding Z., Game combined multi-agent reinforcement learning approach for UAV assisted offloading, IEEE Trans. Veh. Technol. 70 (12) (2021) 12888–12901.
[78]
Yi C., Cai J., Transmission management of delay-sensitive medical packets in beyond wireless body area networks: A queueing game approach, IEEE Trans. Mob. Comput. 17 (9) (2018) 2209–2222.
[79]
Guan Z., Melodia T., Scutari G., To transmit or not to transmit? Distributed queueing games in infrastructureless wireless networks, IEEE/ACM Trans. Netw. 24 (2) (2015) 1153–1166.
[80]
Yi C., Cai J., Zhu K., Wang R., A queueing game based management framework for fog computing with strategic computing speed control, IEEE Trans. Mob. Comput. 21 (5) (2020) 1537–1551.
[81]
Yi C., Cai J., Zhang T., Zhu K., Chen B., Wu Q., Workload re-allocation for edge computing with server collaboration: A cooperative queueing game approach, IEEE Trans. Mob. Comput. (2021).
[82]
Amir R., Grilo I., Stackelberg versus Cournot equilibrium, Games Econom. Behav. 26 (1) (1999) 1–21.
[83]
Chowdhury S., Resource allocation in cognitive radio networks using stackelberg game: A survey, Wirel. Pers. Commun. 122 (1) (2022) 807–824.
[84]
Jia L., Yao F., Sun Y., Xu Y., Feng S., Anpalagan A., A hierarchical learning solution for anti-jamming stackelberg game with discrete power strategies, IEEE Wirel. Commun. Lett. 6 (6) (2017) 818–821.
[85]
Zheng Z., Song L., Han Z., Li G.Y., Poor H.V., A stackelberg game approach to proactive caching in large-scale mobile edge networks, IEEE Trans. Wireless Commun. 17 (8) (2018) 5198–5211.
[86]
Zhang E., Yin S., Ma H., Stackelberg game-based power allocation for V2X communications, Sensors 20 (1) (2019) 58.
[87]
Soorki M.N., Saad W., Manshaei M.H., Saidi H., Stochastic coalitional games for cooperative random access in M2M communications, IEEE Trans. Wireless Commun. 16 (9) (2017) 6179–6192.
[88]
Zhang F., Wang M.M., Stochastic congestion game for load balancing in mobile-edge computing, IEEE Internet Things J. 8 (2) (2020) 778–790.
[89]
Li F., Lam K.-Y., Zhao N., Liu X., Zhao K., Wang L., Spectrum trading for satellite communication systems with dynamic bargaining, IEEE Trans. Commun. 66 (10) (2018) 4680–4693.
[90]
Zhong X., Yin H., He Y., Zhu H., Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory, IEEE Access 7 (2018) 6435–6449.
[91]
Gao Z., Liu A., Han C., Liang X., Files delivery and share optimization in LEO satellite-terrestrial integrated networks: A noma based coalition formation game approach, IEEE Trans. Veh. Technol. 71 (1) (2021) 831–843.
[92]
Liu J., Zhang X., Zhang R., Huang T., Yu F.R., Reliable and low-overhead clustering in LEO small satellite networks, IEEE Internet Things J. (2021).
[93]
Xiong T., Liu J., Zhang R., Zhang X., Luo C., Huang T., Liu Y., Delay-aware cooperative caching for on-chain authentication in LEO satellite communication systems, in: ICC 2022-IEEE International Conference on Communications, IEEE, 2022, pp. 3058–3063.
[94]
Gao Z., Liu A., Han C., Liang X., Non-orthogonal multiple access based average age of information minimization in LEO satellite-terrestrial integrated networks, IEEE Trans. Green Commun. Netw. (2022).
[95]
Li Z., Jiang C., Distributed satellite resource allocation mechanism based on contract theory, in: ICC 2022-IEEE International Conference on Communications, IEEE, 2022, pp. 4577–4582.
[96]
Jia Z., Sheng M., Li J., Zhou D., Han Z., Joint HAP access and LEO satellite backhaul in 6G: Matching game-based approaches, IEEE J. Sel. Areas Commun. 39 (4) (2020) 1147–1159.
[97]
Ni S., Liu J., Sheng M., Li J., Zhao X., Joint optimization of user association and resource allocation in cache-enabled terrestrial-satellite integrating network, Sci. China Inf. Sci. 64 (8) (2021) 1–14.
[98]
Wang B., Xie J., Huang D., Xie X., A computation offloading strategy for LEO satellite mobile edge computing system, in: 2022 14th International Conference on Communication Software and Networks, ICCSN, IEEE, 2022, pp. 75–80.
[99]
Zhang L., Liu J., Sheng M., Zhao N., Li J., Interference-aware resource allocation in satellite integrated terrestrial networks, in: 2022 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2022, pp. 654–659.
[100]
Fang H., Jia Y., Wang Y., Zhao Y., Gao Y., Yang X., Matching game based task offloading and resource allocation algorithm for satellite edge computing networks, in: 2022 International Symposium on Networks, Computers and Communications, ISNCC, IEEE, 2022, pp. 1–5.
[101]
Qin P., Wang M., Zhao X., Geng S., Content service oriented resource allocation for space-air-ground integrated 6G networks: A three-sided cyclic matching approach, IEEE Internet Things J. (2022).
[102]
Tong J., Wang C., Zhao X., Cui G., Wang W., Cooperative beam association and power allocation in UD-LEO satellite communication networks: A spectrum sharing manner, Electronics 11 (3) (2022) 299.
[103]
Mi X., Yang C., Song Y., Han Z., Guizani M., Matching game for intelligent resource management in integrated satellite-terrestrial networks, IEEE Wirel. Commun. (2022).
[104]
Ding H., Zhu S., Meng S., Han J., Liu H., Wang M., Liu J., Qin P., Zhao X., Matching-based resource allocation for satellite–ground network, Sensors 22 (21) (2022) 8436.
[105]
Du J., Jiang C., Zhang H., Ren Y., Guizani M., Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks, IEEE J. Sel. Areas Commun. 36 (10) (2018) 2202–2217.
[106]
Zhang X., Zhang B., An K., Chen Z., Guo D., Auction-based secondary relay selection on overlay spectrum sharing in hybrid satellite–terrestrial sensor networks, Sensors 19 (22) (2019) 5039.
[107]
Zhang X., Guo D., An K., Zheng G., Chatzinotas S., Zhang B., Auction-based multichannel cooperative spectrum sharing in hybrid satellite-terrestrial IoT networks, IEEE Internet Things J. 8 (8) (2020) 7009–7023.
[108]
Chen Q., Meng W., Han S., Li C., Service-oriented fair resource allocation and auction for civil aircrafts augmented space-air-ground integrated networks, IEEE Trans. Veh. Technol. 69 (11) (2020) 13658–13672.
[109]
Zhang X., An K., Zhang B., Chen Z., Yan Y., Guo D., Vickrey auction-based secondary relay selection in cognitive hybrid satellite-terrestrial overlay networks with non-orthogonal multiple access, IEEE Wirel. Commun. Lett. 9 (5) (2020) 628–632.
[110]
Li Z., Jiang C., Kuang L., Double auction mechanism for resource allocation in satellite MEC, IEEE Trans. Cogn. Commun. Netw. 7 (4) (2021) 1112–1125.
[111]
Jung S., Lee M.-S., Kim J., Yun M.-Y., Kim J., Kim J.-H., Trustworthy handover in LEO satellite mobile networks, ICT Express 8 (3) (2022) 432–437.
[112]
Li Z., Yang B., Zhang X., Guo C., Ddos defense method in software-defined space-air-ground network from dynamic Bayesian game perspective, Secur. Commun. Netw. 2022 (2022).
[113]
Wang H., Wang H., An J., Dynamic game-based computation offloading and resource allocation in LEO-multiaccess edge computing, Wirel. Commun. Mob. Comput. 2021 (2021).
[114]
Wu Y., Hu G., Jin F., Zu J., A satellite handover strategy based on the potential game in LEO satellite networks, IEEE Access 7 (2019) 133641–133652.
[115]
Wang J., Zhang B., Jia L., Zhao B., Guo D., A distributed collaborative game-theoretic approach in cognitive satellite communication networks, IEEE Access 8 (2020) 129446–129460.
[116]
Wang J., Zhang B., Zhao B., Ding G., Guo D., A game-theoretical learning approach for spectrum trading in cognitive satellite-terrestrial networks, IEEE Commun. Lett. 25 (9) (2021) 3065–3069.
[117]
Zhang X., Zhang B., Guo D., An K., Qi S., Wu G., Potential game-based radio resource allocation in uplink multibeam satellite IoT networks, IEEE Trans. Aerosp. Electron. Syst. 57 (6) (2021) 4269–4279.
[118]
Li P., Wang Y., Wang Z., A game-based joint task offloading and computation resource allocation strategy for hybrid edgy-cloud and cloudy-edge enabled LEO satellite networks, in: 2022 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2022, pp. 868–873.
[119]
Wang Y., Qin X., Tang Z., Ma T., Zhang X., Zhou H., Qos-centric handover for civil aviation aircraft access in ultra-dense LEO satellite networks, in: 2022 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2022, pp. 1085–1089.
[120]
Jia M., Zhang L., Wu J., Guo Q., Gu X., Joint computing and communication resource allocation for edge computing towards huge LEO networks, China Commun. 19 (8) (2022) 73–84.
[121]
Gao X., Liu R., Kaushik A., Virtual network function placement in satellite edge computing with a potential game approach, IEEE Trans. Netw. Serv. Manag. (2022).
[122]
Guo C., Gong C., Xu H., Zhang L., Han Z., A dynamic handover software-defined transmission control scheme in space-air-ground integrated networks, IEEE Trans. Wireless Commun. (2022).
[123]
Deng R., Di B., Song L., Pricing mechanism design for data offloading in ultra-dense LEO-based satellite-terrestrial networks, in: 2019 IEEE Global Communications Conference, GLOBECOM, IEEE, 2019, pp. 1–6.
[124]
Li F., Lam K.-Y., Chen H.-H., Zhao N., Spectral efficiency enhancement in satellite mobile communications: A game-theoretical approach, IEEE Wirel. Commun. 27 (1) (2019) 200–205.
[125]
Deng R., Di B., Chen S., Sun S., Song L., Ultra-dense LEO satellite offloading for terrestrial networks: How much to pay the satellite operator?, IEEE Trans. Wireless Commun. 19 (10) (2020) 6240–6254.
[126]
Han C., Huo L., Tong X., Wang H., Liu X., Spatial anti-jamming scheme for internet of satellites based on the deep reinforcement learning and stackelberg game, IEEE Trans. Veh. Technol. 69 (5) (2020) 5331–5342.
[127]
Xiaobin X., Hui Z., Chang L., Cunqu F., Zhongjun L., Shangguang W., On the aggregated resource management for satellite edge computing, in: ICC 2021-IEEE International Conference on Communications, IEEE, 2021, pp. 1–6.
[128]
Cai Y., Yao H., Gong Y., Security configuration and pricing scheme for satellite-terrestrial IoT: A stackelberg game, in: 2022 International Wireless Communications and Mobile Computing, IWCMC, IEEE, 2022, pp. 237–242.
[129]
Liao C., Xu K., Zhu H., Xia X., Su Q., Sha N., Secure transmission in satellite-UAV integrated system against eavesdropping and jamming: A two-level stackelberg game model, China Commun. 19 (7) (2022) 53–66.
[130]
Xu Q., Su Z., Lu R., Yu S., Ubiquitous transmission service: Hierarchical wireless data rate provisioning in space-air-ocean integrated networks, IEEE Trans. Wireless Commun. (2022).
[131]
Xu Q., Su Z., Fang D., Wu Y., Hierarchical bandwidth allocation for social community-oriented multicast in space-air-ground integrated networks, IEEE Trans. Wireless Commun. (2022).
[132]
Wang Y., Yang J., Guo X., Qu Z., A game-theoretic approach to computation offloading in satellite edge computing, IEEE Access 8 (2019) 12510–12520.
[133]
Chen Z., Guo D., Zhang J., Zhao B., Correlated equilibrium based access control for integrated satellite-terrestrial networks, in: 2020 International Conference on Wireless Communications and Signal Processing, WCSP, IEEE, 2020, pp. 724–729.
[134]
Chen Z., Zhao B., An K., Ding G., Zhang X., Xu J., Guo D., Correlated equilibrium based distributed power control in cognitive satellite-terrestrial networks, IEEE Commun. Lett. 25 (3) (2020) 945–949.
[135]
Zhang H., Li Q., Zhang Y., Li X., Game theory based power allocation method for inter-satellite links in LEO/MEO two-layered satellite networks, in: 2021 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2021, pp. 398–403.
[136]
Li X., Huang Q., Wu D., A repeated stochastic game approach for strategic network selection in heterogeneous networks, in: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2018, pp. 88–93.
[137]
Zhu X., Jiang C., Kuang L., Zhao Z., Guo S., Two-layer game based resource allocation in cloud based integrated terrestrial-satellite networks, IEEE Trans. Cogn. Commun. Netw. 6 (2) (2020) 509–522.
[138]
Wang D., Wang W., Kang Y., Han Z., Dynamic data offloading for massive users in ultra-dense LEO satellite networks based on stackelberg mean field game, in: IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2022, pp. 1–6.
[139]
Wang D., Wang W., Kang Y., Han Z., Distributed data offloading in ultra-dense LEO satellite networks: A stackelberg mean-field game approach, IEEE J. Sel. Top. Sign. Proces. (2022).
[140]
Zhang X., Qin X., Qian B., Ma T., Zhou H., Joint mode selection and dynamic pricing in ultra dense LEO integrated satellite-terrestrial networks, in: 2022 IEEE/CIC International Conference on Communications in China, ICCC, IEEE, 2022, pp. 1090–1094.
[141]
Jiang W., Software defined satellite networks: a survey, Digit. Commun. Netw. (2023).
[142]
Wang Y., Su Z., Ni J., Zhang N., Shen X., Blockchain-empowered space-air-ground integrated networks: Opportunities, challenges, and solutions, IEEE Commun. Surv. Tutor. 24 (1) (2021) 160–209.
[143]
Far S.B., Bamakan S.M.H., Blockchain-based reporting protocols as a collective monitoring mechanism in DAOs, Data Sci. Manage. 5 (1) (2022) 11–12.
[144]
Ma Z., Wang Y., Li J., Liu Y., A blockchain based privacy-preserving incentive mechanism for internet of vehicles in satellite-terrestrial crowdsensing, Wirel. Commun. Mob. Comput. 2022 (2022).
[145]
Michailidis E.T., Potirakis S.M., Kanatas A.G., AI-inspired non-terrestrial networks for IIoT: Review on enabling technologies and applications, IoT 1 (1) (2020) 3.
[146]
Jimma B.L., Artificial intelligence in healthcare: A bibliometric analysis, Telemat. Inform. Rep. (2023).
[147]
Jiang W., Zhang L., Geospatial data to images: A deep-learning framework for traffic forecasting, Tsinghua Sci. Technol. 24 (1) (2018) 52–64.
[148]
Jiang W., He M., Gu W., Internet traffic prediction with distributed multi-agent learning, Appl. Syst. Innov. 5 (6) (2022) 121.
[149]
Chen M., Challita U., Saad W., Yin C., Debbah M., Artificial neural networks-based machine learning for wireless networks: A tutorial, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3039–3071.
[150]
Tan J., Guan W., Resource allocation of fog radio access network based on deep reinforcement learning, Eng. Rep. 4 (5) (2022).
[151]
Jiang W., Luo J., Graph neural network for traffic forecasting: A survey, Expert Syst. Appl. (2022).
[152]
Jiang W., Graph-based deep learning for communication networks: A survey, Comput. Commun. 185 (2022) 40–54.
[153]
Ivanov A., Tonchev K., Poulkov V., Manolova A., Neshov N.N., Graph-based resource allocation for integrated space and terrestrial communications, Sensors 22 (15) (2022) 5778.
[154]
Roberson B., The colonel blotto game, Econom. Theory 29 (1) (2006) 1–24.
[155]
Gouissem A., Abualsaud K., Yaacoub E., Khattab T., Guizani M., Game theory for anti-jamming strategy in multichannel slow fading iot networks, IEEE Internet Things J. 8 (23) (2021) 16880–16893.
[156]
Wang Y., Zhang L., Min M., Guo C., Sharma V., Han Z., Privacy-aware wireless power transfer for aerial computation offloading via Colonel Blotto game, in: 2020 IEEE Globecom Workshops (GC Wkshps, IEEE, 2020, pp. 1–6.
[157]
Hajimirsadeghi M., Sridharan G., Saad W., Mandayam N.B., Inter-network dynamic spectrum allocation via a Colonel Blotto game, in: 2016 Annual Conference on Information Science and Systems, CISS, IEEE, 2016, pp. 252–257.
[158]
Tremblay C.H., Tremblay V.J., Oligopoly games and the Cournot–Bertrand model: a survey, J. Econ. Surv. 33 (5) (2019) 1555–1577.
[159]
Wang K., Yuan L., Miyazaki T., Guo S., Sun Y., Antieavesdropping with selfish jamming in wireless networks: A Bertrand game approach, IEEE Trans. Veh. Technol. 66 (7) (2016) 6268–6279.
[160]
Mabrouk A., Kobbane A., Sabir E., Ben-Othman J., El Koutbi M., Meeting always-best-connected paradigm in heterogeneous vehicular networks: A graph theory and a signaling game analysis, Veh. Commun. 5 (2016) 1–8.
[161]
Haddadou N., Rachedi A., Ghamri-Doudane Y., A job market signaling scheme for incentive and trust management in vehicular ad hoc networks, IEEE Trans. Veh. Technol. 64 (8) (2014) 3657–3674.
[162]
Shen S., Huang L., Zhou H., Yu S., Fan E., Cao Q., Multistage signaling game-based optimal detection strategies for suppressing malware diffusion in fog-cloud-based IoT networks, IEEE Internet Things J. 5 (2) (2018) 1043–1054.
[163]
Hayat R., Sabir E., Badidi E., ElKoutbi M., A signaling game-based approach for data-as-a-service provisioning in IoT-cloud, Future Gener. Comput. Syst. 92 (2019) 1040–1050.
[164]
Chai R., Tsourdos A., Savvaris A., Chai S., Xia Y., Chen C.P., Review of advanced guidance and control algorithms for space/aerospace vehicles, Prog. Aerosp. Sci. 122 (2021).
[165]
Chai R., Tsourdos A., Savvaris A., Chai S., Xia Y., Chen C.P., Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach, IEEE Trans. Neural Netw. Learn. Syst. 31 (11) (2019) 5005–5013.
[166]
Chai R., Tsourdos A., Savvaris A., Xia Y., Chai S., Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network, IEEE Trans. Ind. Electron. 67 (8) (2019) 6904–6915.
[167]
Chai R., Tsourdos A., Savvaris A., Chai S., Xia Y., Solving constrained trajectory planning problems using biased particle swarm optimization, IEEE Trans. Aerosp. Electron. Syst. 57 (3) (2021) 1685–1701.
[168]
Chai R., Tsourdos A., Gao H., Xia Y., Chai S., Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances, IEEE Trans. Ind. Electron. 69 (4) (2021) 4022–4033.
[169]
Chai R., Tsourdos A., Gao H., Chai S., Xia Y., Attitude tracking control for reentry vehicles using centralised robust model predictive control, Automatica 145 (2022).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Communications
Computer Communications  Volume 217, Issue C
Mar 2024
269 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 25 June 2024

Author Tags

  1. Game theory
  2. Satellite communication network
  3. Cooperative game
  4. Non-cooperative game

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media