Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

CoMap: : An efficient virtual network re-mapping strategy based on coalitional matching theory

Published: 24 October 2022 Publication History

Abstract

Virtualization of resources has been adopted in different environments such as wireless sensor networks (WSN), 5G networks, Fog computing, Internet of Things (IoT), and traditional data center (DC) networks. In DC networks, virtualized resources are provisioned as virtual networks (VNs), which comprise multiple communicating virtual machines (VMs) and virtual links (VLs) capturing their communication dependencies. However these virtual components, i.e., VMs and VLs, often experience fluctuating resource demands and require dynamic re-embedding as part of the management activities undertaken by the service providers (SPs). This paper focuses on addressing the issue of resource re-embedding via solution components (SCs), where a SC comprises a VM and its attached VLs, with either the VM and/or at least one of the VLs facing resource expansion. In fact, the resource provisioning problem for VNs is proven to be NP-Hard. Further, the requirement of distributed allocation of VMs of the VNs across the servers to avoid single point failure and enhance the survivability adds to the existing complexity. We propose a framework called CoMap that aims to generate an efficient relocation plan in polynomial time for VNs to reduce the re-embedding costs and improve the utilization of DC servers. The overall problem is modeled as a one-to-many matching game with coalition formation at the servers. Simulation results confirm a 32% average reduction in re-embedding cost and a 69% improvement in the average server utilization compared to the baseline algorithms.

References

[1]
Sapavath N.N., Rawat D.B., Wireless virtualization architecture: Wireless networking for internet of things, IEEE Internet Things J. 7 (7) (2020) 5946–5953,.
[2]
Katona R., Cionca V., O’Shea D., Pesch D., Virtual network embedding for wireless sensor networks time-efficient QoS/QoI-Aware approach, IEEE Internet Things J. 8 (2) (2021) 916–926,.
[3]
Li Y., Zhang Z., Xia S., Chen H.-H., A load-balanced re-embedding scheme for wireless network virtualization, IEEE Trans. Veh. Technol. 70 (4) (2021) 3761–3772,.
[4]
Bonati L., Polese M., DâOro S., Basagni S., Melodia T., Open, programmable, and virtualized 5G networks: State-of-the-art and the road ahead, Comput. Netw. 182 (2020),.
[5]
Campolo C., Molinaro A., Iera A., Menichella F., 5G network slicing for vehicle-to-everything services, IEEE Wirel. Commun. 24 (6) (2017) 38–45,.
[6]
Swain C., Sahoo M.N., Satpathy A., Muhammad K., Bakshi S., Rodrigues J.J.P.C., de Albuquerque V.H.C., METO: Matching-theory-based efficient task offloading in IoT-fog interconnection networks, IEEE Internet Things J. 8 (16) (2021) 12705–12715,.
[7]
Swain C., Sahoo M.N., Satpathy A., SPATO: A student project allocation based task offloading in IoT-fog systems, in: ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6,.
[8]
Zhang Z., Li C., Peng S., Pei X., A new task offloading algorithm in edge computing, EURASIP J. Wireless Commun. Networking 2021 (1) (2021) 1–21,.
[9]
Sun L., Xue G., Yu R., TAFS: A truthful auction for IoT application offloading in fog computing networks, IEEE Internet Things J. (2022),.
[10]
Swain C., Sahoo M.N., Satpathy A., LETO: An efficient load balanced strategy for task offloading in IoT-fog systems, in: 2021 IEEE International Conference on Web Services (ICWS), 2021, pp. 459–464,.
[11]
Montazerolghaem A., Yaghmaee M.H., Demand response application as a service: An SDN-based management framework, IEEE Trans. Smart Grid (2021),.
[12]
Pourmajidi W., Zhang L., Steinbacher J., Erwin T., Miranskyy A., Immutable log storage as a service on private and public blockchains, IEEE Trans. Serv. Comput. (2021),.
[13]
Aguilar-Fuster C., Rubio-Loyola J., A novel evaluation function for higher acceptance rates and more profitable metaheuristic-based online virtual network embedding, Comput. Netw. 195 (2021),.
[14]
Kibalya G., Serrat J., Gorricho J.-L., Yao H., Zhang P., A novel dynamic programming inspired algorithm for embedding of virtual networks in future networks, Comput. Netw. 179 (2020),.
[15]
Hieu N.T., Francesco M.D., Ylä-Jääski A., Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers, IEEE Trans. Serv. Comput. 13 (1) (2020) 186–199,.
[16]
Andersen D.G., Theoretical approaches to node assignment, 2014,.
[17]
Satpathy A., Sahoo M.N., Chottray L., Majhi B., Mishra A., Bakshi S., VRMap: A cost and time aware remapping of virtual data centres over a geo-distributed infrastructure, in: 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), 2020, pp. 427–434,.
[18]
Fischer A., Botero J.F., Beck M.T., de Meer H., Hesselbach X., Virtual network embedding: A survey, IEEE Commun. Surv. Tutor. 15 (4) (2013) 1888–1906,.
[19]
Sun G., Yu H., Anand V., Li L., A cost efficient framework and algorithm for embedding dynamic virtual network requests, Future Gener. Comput. Syst. 29 (5) (2013) 1265–1277,.
[20]
Satpathy A., Sahoo M.N., Behera L., Swain C., ReMatch: An efficient virtual data center re-matching strategy based on matching theory, IEEE Trans. Serv. Comput. (2022) 1–14,. in press.
[21]
Sun G., Liao D., Zhao D., Xu Z., Yu H., Live migration for multiple correlated virtual machines in cloud-based data centers, IEEE Trans. Serv. Comput. 11 (2) (2018) 279–291,.
[22]
Cao H., Yang L., Zhu H., Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual network embedding, IEEE Internet Things J. 5 (1) (2018) 108–120,.
[23]
Rabbani M.G., Esteves R.P., Podlesny M., Simon G., Granville L.Z., Boutaba R., On tackling virtual data center embedding problem, in: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2013, pp. 177–184.
[24]
Dab B., Fajjari I., Aitsaadi N., Pujolle G., VNR-GA: Elastic virtual network reconfiguration algorithm based on genetic metaheuristic, in: 2013 IEEE Global Communications Conference (GLOBECOM), 2013, pp. 2300–2306,.
[25]
Gale D., Shapley L.S., College admissions and the stability of marriage, Amer. Math. Monthly 69 (1) (1962) 9–15,.
[26]
Sun G., Liao D., Bu S., Yu H., Sun Z., Chang V., The efficient framework and algorithm for provisioning evolving VDC in federated data centers, Future Gener. Comput. Syst. 73 (2017) 79–89,.
[27]
Pathak I., Vidyarthi D.P., A model for virtual network embedding across multiple infrastructure providers using genetic algorithm, Sci. China Inf. Sci. 60 (4) (2017) 1–12,.
[28]
Metwally K., Jarray A., Karmouch A., A distributed auction-based framework for scalable IaaS provisioning in geo-data centers, IEEE Trans. Cloud Comput. 8 (3) (2020) 647–659,.
[29]
Chowdhury N.M.M.K., Rahman M.R., Boutaba R., Virtual network embedding with coordinated node and link mapping, in: 2009 IEEE Conference on Computer Communications (INFOCOM), 2009, pp. 783–791,.
[30]
Wang Z., Guo C., Bose S.K., Shen G., Frequency-adaptive VDC embedding to minimize energy consumption of data centers, IEEE Trans. Green Commun. Netw. 6 (1) (2022) 447–461,.
[31]
Dehury C.K., Sahoo P.K., Failure aware semi-centralized virtual network embedding in cloud computing fat-tree data center networks, IEEE Trans. Cloud Comput. (2020),.
[32]
Fajjari I., Aitsaadi N., Pujolle G., Zimmermann H., VNE-AC: Virtual network embedding algorithm based on ant colony metaheuristic, in: 2011 IEEE International Conference on Communications (ICC), 2011, pp. 1–6,.
[33]
Nguyen K., Lu Q., Huang C., Efficient virtual network embedding with node ranking and intelligent link mapping, in: 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), 2020, pp. 1–5,.
[34]
Martinez-Julia P., Kafle V.P., Asaeda H., A genetic approach to continuous optimization of virtual network embedding, in: 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), 2021, pp. 70–74,.
[35]
Guo K., Wang Y., Qiu X., Li W., Xiao A., Particle swarm optimization based multi-domain virtual network embedding, in: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2015, pp. 798–801,.
[36]
Song A., Chen W.-N., Gu T., Yuan H., Kwong S., Zhang J., Distributed virtual network embedding system with historical archives and set-based particle swarm optimization, IEEE Trans. Syst. Man Cybern. 51 (2) (2021) 927–942,.
[37]
Abdel-Basset M., El-Shahat D., Elhoseny M., Song H., Energy-aware metaheuristic algorithm for industrial-internet-of-things task scheduling problems in fog computing applications, IEEE Internet Things J. 8 (16) (2021) 12638–12649,.
[38]
Xu H., Li B., Anchor: A versatile and efficient framework for resource management in the cloud, IEEE Trans. Parallel Distrib. Syst. 24 (6) (2013) 1066–1076,.
[39]
Wood T., Shenoy P., Venkataramani A., Yousif M., Black-box and gray-box strategies for virtual machine migration, in: Proceedings of the 4th USENIX Conference on Networked Systems Design & amp; Implementation, in: NSDI’07, USENIX Association, 2007, p. 17,.
[40]
Satpathy A., Sahoo M.N., Behera L., Swain C., Mishra A., VMatch: A matching theory based VDC reconfiguration strategy, in: 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), 2020, pp. 133–140,.
[41]
Xu H., Li B., Seen as stable marriages, in: 2011 Proceedings IEEE INFOCOM, 2011, pp. 586–590,.
[42]
Gu Y., Saad W., Bennis M., Debbah M., Han Z., Matching theory for future wireless networks: fundamentals and applications, IEEE Commun. Mag. 53 (5) (2015) 52–59,.
[43]
Ali M., Riaz N., Ashraf M.I., Qaisar S., Naeem M., Joint cloudlet selection and latency minimization in fog networks, IEEE Trans. Ind. Inf. 14 (9) (2018) 4055–4063,.
[44]
Irving R.W., Manlove D.F., Scott S., The hospitals/residents problem with ties, in: Algorithm Theory - SWAT 2000, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 259–271,.
[45]
Liu Z., Yang X., Yang Y., Wang K., Mao G., DATS: Dispersive stable task scheduling in heterogeneous fog networks, IEEE Internet Things J. 6 (2) (2019) 3423–3436,.
[46]
Rezaei A., Azmi P., Yamchi N.M., Javan M.R., Yanikomeroglu H., Robust resource allocation for cooperative MISO-NOMA-based heterogeneous networks, IEEE Trans. Commun. 69 (6) (2021) 3864–3878,.
[47]
Fragiadakis D., Iwasaki A., Troyan P., Ueda S., Yokoo M., Strategyproof matching with minimum quotas, ACM Trans. Econ. Comput. (TEAC) 4 (1) (2016) 1–40,.
[48]
Velasquez M., Hester P.T., An analysis of multi-criteria decision making methods, Int. J. Oper. Res. 10 (2) (2013) 56–66.
[49]
Priyadarshini I., Kumar R., Sharma R., Singh P.K., Satapathy S.C., Identifying cyber insecurities in trustworthy space and energy sector for smart grids, Comput. Electr. Eng. 93 (2021),.
[50]
Saaty T.L., Decision making with the analytic hierarchy process, Int. J. Serv. Sci. 1 (2008) 83–98,.
[51]
Triantaphyllou E., Multi-criteria decision making methods, in: Multi-Criteria Decision Making Methods: A Comparative Study, Springer, 2000, pp. 5–21,.
[52]
Alizadeh M., Yang S., Sharif M., Katti S., McKeown N., Prabhakar B., Shenker S., Pfabric: Minimal near-optimal datacenter transport, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 435–446,.
[53]
Zhou A., Wang S., Ma X., Yau S.S., Towards service composition aware virtual machine migration approach in the cloud, IEEE Trans. Serv. Comput. 13 (4) (2020) 735–744,.

Cited By

View all
  • (2025)LitE: Load Balanced Virtual Data Center Embedding for Energy Efficiency in Data CentersProceedings of the 26th International Conference on Distributed Computing and Networking10.1145/3700838.3700849(31-35)Online publication date: 4-Jan-2025
  • (2025)Optimizing SDN resource allocation using fuzzy logic and VM mapping techniqueComputing10.1007/s00607-024-01360-4107:1Online publication date: 1-Jan-2025
  • (2023)NORDComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2023.109661225:COnline publication date: 1-Apr-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Networks: The International Journal of Computer and Telecommunications Networking
Computer Networks: The International Journal of Computer and Telecommunications Networking  Volume 216, Issue C
Oct 2022
545 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 24 October 2022

Author Tags

  1. Virtual networks
  2. Resource management
  3. Data centers
  4. Matching theory
  5. Coalition formation
  6. Re-embedding

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)LitE: Load Balanced Virtual Data Center Embedding for Energy Efficiency in Data CentersProceedings of the 26th International Conference on Distributed Computing and Networking10.1145/3700838.3700849(31-35)Online publication date: 4-Jan-2025
  • (2025)Optimizing SDN resource allocation using fuzzy logic and VM mapping techniqueComputing10.1007/s00607-024-01360-4107:1Online publication date: 1-Jan-2025
  • (2023)NORDComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2023.109661225:COnline publication date: 1-Apr-2023
  • (2023)Application of human–computer interaction system based on machine learning algorithm in artistic visual communicationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-08267-w27:14(10199-10211)Online publication date: 3-May-2023
  • (2023)Research of natural language processing based on dynamic search corpus in cultural translation and emotional analysisSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-08138-427:11(7647-7655)Online publication date: 18-Apr-2023

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media