Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies

Published: 01 February 2020 Publication History
  • Get Citation Alerts
  • Highlights

    An accurate prediction method forecast the honeybee colony health status.
    Honeybees health status from homeostasis, weight, inspections, and weather data.
    Prediction model based on the Random Forest algorithm with hit rate over 90.
    A method to help the beekeeper avoiding winter colonies losses.
    A complementary aspect of sensors and inspection data for warnings honeybees’ problems.

    Abstract

    Bees are the main pollinators of most insect-pollinated wild plant species and are essential for the maintenance of plant ecosystems and food production. However, over the past three decades they have been suffering from numerous health challenges, including changes in habitat, pollutants and toxins, pests and diseases, and competition for resources. An attempt to mitigate this problem is to estimate the health status of colonies and indicate an imminent collapsing state to beekeepers. To estimate the health status of bee colonies, we propose a method for calibrating a classification algorithm based on a supervised machine learning approach. We trained, validated, and tested three well-known and distinguished classification algorithms (k-Nearest Neighbors, Random Forest, and Neural Networks) and used real datasets from 6 apiaries, 27 Western honeybee (Apis mellifera) beehives monitored over three years (2016, 2017 and 2018). We used internal temperature and beehive weight as well as weather data (temperature, dew point, wind direction, wind speed, rainfall, and daylight). We also used 703 in loco apiary inspections made on a weekly basis to add to the data from sensors for the labeling needed in the training phase of supervised learning algorithms. The results suggest that we are proposing a high precision classification model (hit rate over 90%), which can be useful to self-predict healthy, unhealthy, and collapsing bee colony health states.

    References

    [1]
    H.F. Abou-Shaara, A.A. Owayss, Y.Y. Ibrahim, N.K. Basuny, A review of impacts of temperature and relative humidity on various activities of honey bees, Insectes Soc. 64 (2017) 455–463,.
    [2]
    Becher, M.A., 2010. The Influence of Developmental Temperatures on Division of Labour in Honeybee Colonies (Ph.D. thesis). Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Diss.
    [3]
    M. Bencsik, Y. Le Conte, M. Reyes, M. Pioz, D. Whittaker, D. Crauser, N. Simon Delso, M.I. Newton, Honeybee colony vibrational measurements to highlight the brood cycle, PLOS ONE 10 (2015) 1–16,.
    [4]
    A.D.M. Bezerra, A.J. Pacheco Filho, I.G. Bomfim, G. Smagghe, B.M. Freitas, Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics, Agric. Syst. 169 (2019) 49–57,.
    [5]
    Braga, A.R., Furtado, L., Bezerra, A.D., Freitas, B., Cazier, J., Gomes, D.G., 2019. Applying the long-term memory algorithm to forecast thermoregulation capacity loss in honeybee colonies. In: CSBC 2019 - 10 Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais (WCAMA), pp. 1–14. URL https://sol.sbc.org.br/index.php/wcama/article/download/6422/6318/.
    [6]
    R. Brodschneider, A. Gray, N. Adjlane, A. Ballis, V. Brusbardis, J.D. Charrière, R. Chlebo, M.F. Coffey, B. Dahle, D.C. de Graaf, M.M. Dražic, G. Evans, M. Fedoriak, I. Forsythe, A. Gregorc, U. Grzeda, A. Hetzroni, L. Kauko, P. Kristiansen, M. Martikkala, R. Martín-Hernández, C.A. Medina-Flores, F. Mutinelli, A. Raudmets, V.A. Ryzhikov, N. Simon-Delso, J. Stevanovic, A. Uzunov, F. Vejsnæs, S. Wöhl, M. Zammit-Mangion, J. Danihlík, Multi-country loss rates of honey bee colonies during winter 2016/2017 from the coloss survey, J. Apic. Res. 57 (2018) 452–457,.
    [7]
    M.J.F. Brown, L.V. Dicks, R.J. Paxton, K.C.R. Baldock, A.B. Barron, M.P. Chauzat, B.M. Freitas, D. Goulson, S.J. Jepsen, C. Kremen, J. Li, P. Neumann, D.E. Pattemore, S.G. Potts, O. Schweiger, C.L. Seymour, J. Stout, A horizon scan of future threats and opportunities for pollinators and pollination, PeerJ 4 (2016) 2249,.
    [8]
    Cazier, J.A., 2018. Peering into the future a path to the genius hive — bee culture. pp. 44–46. https://www.beeculture.com/peering-into-the-future-a-path-to-the-genius-hive/ (accessed 14 Dec. 2018).
    [9]
    C.N. Cook, M.D. Breed, Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees, Anim. Behav. 86 (2013) 323–329,.
    [10]
    R.W. Currie, S.F. Pernal, E. Guzmán-Novoa, Honey bee colony losses in canada, J. Apic. Res. 49 (2010) 104–106,.
    [11]
    K. Dineva, T. Atanasova, Applying machine learning against beehives dataset, Int. Multidiscipl. Sci. GeoConference: SGEM: Surv. Geol. Min. Ecol. Manage. 18 (2018) 35–42.
    [12]
    K. Dineva, T. Atanasova, Osemn process for working over data acquired by iot devices mounted in beehives, Curr. Trends Nat. Sci. 7 (2018) 47–53.
    [13]
    J.M. Flores, S. Gil-Lebrero, V. Gámiz, M.I. Rodríguez, M.A. Ortiz, F.J. Quiles, Effect of the climate change on honey bee colonies in a temperate mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment, Sci. Total Environ. 653 (2019) 1111–1119,.
    [14]
    G. Formato, F.J. Smulders, Risk management in primary apicultural production. Part 1: bee health and disease prevention and associated best practices, Veterinary Quart. 31 (2011) 29–47,. pMID: 22029819.
    [15]
    B. Freitas, R. Sousa, I. Bomfim, Absconding and migratory behaviors of feral africanized honey bee (Apis mellifera L.) colonies in ne brazil, Acta Scientiarum: Biol. Sci. 29 (2007).
    [16]
    N. Gallai, J.M. Salles, J. Settele, B.E. Vaissière, Economic valuation of the vulnerability of world agriculture confronted with pollinator decline, Ecol. Econ. 68 (2009) 810–821,.
    [17]
    L.A. Garibaldi, et al., Wild pollinators enhance fruit set of crops regardless of honey bee abundance, Science (New York, N.Y.) 339 (2013) 1608–1611,.
    [18]
    G. Gilioli, G. Sperandio, F. Hatjina, A. Simonetto, Towards the development of an index for the holistic assessment of the health status of a honey bee colony, Ecol. Ind. 101 (2019) 341–347,.
    [19]
    H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263–1284,.
    [20]
    G. Heldmaier, Temperature control in honey bee colonies, Bioscience 37 (1987) 395–399,.
    [21]
    IPBES, 2016. Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. In: Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., Aizen, M.A., Cunningham, S.A., Eardley, C., Freitas, B.M., Gallai, N., Kevan, P.G., Kovács-Hostyánszki, A., Kwapong, P.K., Li, J., Li, X., Martins, D.J., Nates-Parra, G., Pettis, J.S., Rader, R., Viana, B.F. (Eds.). Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, Bonn, Germany. pp. 1–40.
    [22]
    Jacobs, M., Cazier, J.A., Wilkes, J.T., Rogers, R., Hassler, E.E., 2017. Building a business analytics platform for enhancing commercial beekeepers’ performance: Descriptive validation of a data framework for widespread adoption by citizen scientists. In: 23rd Americas Conference on Information Systems, AMCIS 2017, Boston, MA, USA, August 10–12, 2017, pp. 1–10. http://aisel.aisnet.org/amcis2017/DataScience/Presentations/24.
    [23]
    A.M. Klein, B.E. Vaissiére, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen, T. Tscharntke, Importance of pollinators in changing landscapes for world crops, Proc. Biol. Sci. 274 (1608) (2007) 303–313,.
    [24]
    D.S. Kridi, C.G.N. de Carvalho, D.G. Gomes, Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection, Comput. Electron. Agric. 127 (2016) 221–235,.
    [25]
    K. Kulhanek, N. Steinhauer, K. Rennich, D.M. Caron, R.R. Sagili, J.S. Pettis, J.D. Ellis, M.E. Wilson, J.T. Wilkes, D.R. Tarpy, R. Rose, K. Lee, J. Rangel, D. vanEngelsdorp, A national survey of managed honey bee 2015–2016 annual colony losses in the USA, J. Apic. Res. 56 (2017) 328–340,.
    [26]
    K. Lee, N. Steinhauer, D.A. Travis, M.D. Meixner, J. Deen, D. vanEngelsdorp, Honey bee surveillance: a tool for understanding and improving honey bee health, Curr. Opin. Insect Sci. 10 (2015) 37–44,. social Insects Vectors and Medical and Veterinary Entomology.
    [27]
    M. Levé, E. Baudry, C. Bessa-Gomes, Domestic gardens as favorable pollinator habitats in impervious landscapes, Sci. Total Environ. 647 (2019) 420–430,.
    [28]
    W.G. Meikle, N. Holst, Application of continuous monitoring of honeybee colonies, Apidologie 46 (2015) 10–22,.
    [29]
    W.G. Meikle, M. Weiss, P.W. Maes, W. Fitz, L.A. Snyder, T. Sheehan, B.M. Mott, K.E. Anderson, Internal hive temperature as a means of monitoring honey bee colony health in a migratory beekeeping operation before and during winter, Apidologie 48 (2017) 666–680,.
    [30]
    R.A. Morse, N.W. Calderone, The value of honey bees as pollinators of us crops in 2000, Bee culture 128 (2000) 1–15.
    [31]
    C.T. Mumbi, A.R. Mwakatobe, I.H. Mpinga, A. Richard, R. Machumu, Parasitic mite, varroa species (parasitiformes: Varroidae) infesting the colonies of african honeybees, apis mellifera scutellata (hymenoptera: Apididae) in tanzania, J. Entomol. Zool. Stud 2 (2014) 188–196.
    [32]
    F.E. Murphy, M. Magno, P.M. Whelan, J. O’Halloran, E.M. Popovici, b+wsn: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring, Comput. Electron. Agric. 124 (2016) 211–219,.
    [33]
    J. Ollerton, Pollinator diversity: distribution, ecological function, and conservation, Annu. Rev. Ecol. Evol. Syst. 48 (2017) 353–376,.
    [34]
    T.M. Oshiro, P.S. Perez, J.A. Baranauskas, How many trees in a random forest?, in: P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition, Springer, Berlin, Heidelberg, 2012, pp. 154–168.
    [35]
    S.G. Potts, J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, W.E. Kunin, Global pollinator declines: trends, impacts and drivers, Trends Ecol. Evol. 25 (2010) 345–353,.
    [36]
    S.G. Potts, V. Imperatriz-Fonseca, H.T. Ngo, M.A. Aizen, J.C. Biesmeijer, T.D. Breeze, L.V. Dicks, L.A. Garibaldi, R. Hill, J. Settele, A.J. Vanbergen, Safeguarding pollinators and their values to human well-being, Nature 540 (2016) 220–229,.
    [37]
    L. Rice, Wireless Data Acquisition for Apiology Applications, (Master’s thesis) Appalachian State University, Boone, NC, 2013, https://libres.uncg.edu/ir/asu/f/Rice,%20Luke_2013_Thesis.pdf.
    [38]
    A. Robles-Guerrero, T. Saucedo-Anaya, E. González-Ramírez, J.I.D. la Rosa-Vargas, Analysis of a multiclass classification problem by lasso logistic regression and singular value decomposition to identify sound patterns in queenless bee colonies, Comput. Electron. Agric. 159 (2019) 69–74,.
    [39]
    V. Sánchez, S. Gil, J.M. Flores, F.J. Quiles, M.A. Ortiz, J.J. Luna, Implementation of an electronic system to monitor the thermoregulatory capacity of honeybee colonies in hives with open-screened bottom boards, Comput. Electron. Agric. 119 (2015) 209–216,.
    [40]
    M. Spivak, G.S. Reuter, Resistance to american foulbrood disease by honey bee colonies apis mellifera bred for hygienic behavior, Apidologie 32 (2001) 555–565,.
    [41]
    D.B. Sponsler, C.M. Grozinger, C. Hitaj, M. Rundlöf, C. Botías, A. Code, E.V. Lonsdorf, A.P. Melathopoulos, D.J. Smith, S. Suryanarayanan, W.E. Thogmartin, N.M. Williams, M. Zhang, M.R. Douglas, Pesticides and pollinators: a socioecological synthesis, Sci. Total Environ. 662 (2019) 1012–1027,.
    [42]
    E. Stalidzans, A. Berzonis, Temperature changes above the upper hive body reveal the annual development periods of honey bee colonies, Comput. Electron. Agric. 90 (2013) 1–6,.
    [43]
    D. vanEngelsdorp, D.R. Tarpy, E.J. Lengerich, J.S. Pettis, Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern united states, Prev. Vet. Med. 108 (2013) 225–233,.
    [44]
    H.A. Verboven, R. Uyttenbroeck, R. Brys, M. Hermy, Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use, Landscape Urban Plan. 126 (2014) 31–41,.
    [45]
    M. Winston, The Biology of the Honey Bee, Harvard University Press., 1991, https://books.google.com/books?id=-5iobWHLtAQC.
    [46]
    A. Zacepins, V. Brusbardis, J. Meitalovs, E. Stalidzans, Challenges in the development of precision beekeeping, Biosyst. Eng. 130 (2015) 60–71,.
    [47]
    A. Zacepins, A. Kviesis, A. Pecka, V. Osadcuks, Development of internet of things concept for precision beekeeping, in: 2017 18th International Carpathian Control Conference (ICCC), 2017, pp. 23–27,.

    Cited By

    View all
    • (2024)A novel redundant cooperative control strategy for robotic pollinationComputers and Electronics in Agriculture10.1016/j.compag.2024.108846220:COnline publication date: 17-Jul-2024
    • (2023)Development, analysis, and verification of an intelligent auxiliary beekeeping device mounted on a crawler transporterComputers and Electronics in Agriculture10.1016/j.compag.2023.108148212:COnline publication date: 1-Sep-2023
    • (2022)Research on the orientation flights and colony development of Apis cerana based on smart beehivesComputers and Electronics in Agriculture10.1016/j.compag.2022.106733193:COnline publication date: 1-Feb-2022

    Index Terms

    1. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computers and Electronics in Agriculture
          Computers and Electronics in Agriculture  Volume 169, Issue C
          Feb 2020
          674 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 February 2020

          Author Tags

          1. Precision beekeeping
          2. Bee health monitoring
          3. Machine learning
          4. Apis mellifera.

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 29 Jul 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)A novel redundant cooperative control strategy for robotic pollinationComputers and Electronics in Agriculture10.1016/j.compag.2024.108846220:COnline publication date: 17-Jul-2024
          • (2023)Development, analysis, and verification of an intelligent auxiliary beekeeping device mounted on a crawler transporterComputers and Electronics in Agriculture10.1016/j.compag.2023.108148212:COnline publication date: 1-Sep-2023
          • (2022)Research on the orientation flights and colony development of Apis cerana based on smart beehivesComputers and Electronics in Agriculture10.1016/j.compag.2022.106733193:COnline publication date: 1-Feb-2022

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media