A varying-coefficient model for the analysis of methylation sequencing data
Graphical abstract
Display Omitted
References
[1]
Bansal A., Pinney S.E., DNA methylation and its role in the pathogenesis of diabetes, Pediatr Diabetes 18 (3) (2017) 167–177.
[2]
Beck D., Maamar M.B, Skinner M.K., Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons, Epigenetics 17 (2022) 518–530.
[3]
Bergman Y., Cedar H., DNA methylation dynamics in health and disease, Nat. Struct. Mol. Biol. 20 (3) (2013).
[4]
Gong T., Borgard H., Zhang Z., Chen S., Gao Z., Deng Y., Analysis and performance assessment of the whole genome bisulfite sequencing data workflow: Currently available tools and a practical guide to advance DNA methylation studies, Small Methods 6 (2022).
[5]
Green P.J., Silverman B.W., Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Chapman & Hall, 1994.
[6]
Hansen K.D., Bsseqdata: Example whole genome bisulfite data for the bsseq package, 2020, R package version 0.26.0.
[7]
Hansen K.D., Langmead B., Irizarry R.A., BSmooth: From whole genome bisulfite sequencing reads to differentially methylated regions, Genome Biol. 13 (R83) (2012).
[8]
Hansen K.D., Timp W., Bravo H.C., Sabunciyan S., Langmead B., McDonald O.G., Wen B., Wu H., Liu Y., Diep D., Briem E., Zhang K., Irizarry R.A., Feinberg A.P., Increased methylation variation in epigenetic domains across cancer types, Nature Genet. 43 (2011) 768–775.
[9]
Hastie T., Tibshirani R., Varying-coefficient models, J. R. Stat. Soc. Ser. B 55 (4) (1993) 757–796.
[10]
Hebestreit K., Dugas M., Klein H.U., Detection of significantly differentially methylated regions in targeted bisulfite sequencing data, Bioinformatics 29 (13) (2013) 1647–1653.
[11]
Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H., Minx P., et al., Generation and annotation of the DNA sequences of human chromosomes 2 and 4, Nature 434 (7034) (2005) 724–731.
[12]
Hudson M., Bernatsky S., Colmegna I., Lora M., Pastinen T., Klein Oros K., Greenwood C.M.T., Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis, Epigenetics 12 (6) (2017) 433–440.
[13]
Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., Gabo K., Rongione M., Webster M., Ji H., Potash J.B., Sabunciyan S., Feinberg A.P., The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores, Nature Genet. 41 (2) (2009).
[14]
Klein H.U., Hebestreit K., An evaluation of methods to test predefined genomic regions for differential methylation in bisulfite sequencing data, Brief. Bioinform. 17 (5) (2016) 796–807.
[15]
Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., Lee L., Ye Z., Ngo Q.M., Edsall L., Antosiewicz-Bourget J., Stewart R., Ruotti V., Millar A.H., Thomson J.A., Ren B., Ecker J.R., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature 462 (19) (2009).
[16]
Lu S., Wang J., Kakongoma N., Hua W., Xu J., Wang Y., He S., Gu H., Shi J., Hu W., DNA methylation and expression profiles of placenta and umbilical cord blood reveal the characteristics of gestational diabetes mellitus patients and offspring, Clin. Epigenetics 14 (69) (2022).
[17]
Maegawa S., Hinkal G., Kim H.S., Shen L., Zhang L., Zhang J., Zhang N., Liang S., Donehower L.A., Issa J.P.J., Widespread and tissue specific age-related DNA methylation changes in mice, Genome Res. 20 (2010) 332–340.
[18]
Moore L.D., Le T., Fan G., DNA methylation and its basic function, Neuropsychopharmacology 38 (2013) 23–38.
[19]
Moser D.A., Müller S., Hummel E.M., Limberg A.S., Dieckmann L., Frach L., Pakusch J., Flasbeck V., Brüne M., Beygo J., Klein-Hitpass L., Kumsta R., Targeted bisulfite sequencing: A novel tool for the assessment of DNA methylation with high sensitivity and increased coverage, Psychoneuroendocrinology 120 (2020).
[20]
Nelder J.A., Pregibon D., An extended quasi-likelihood function, Biometrika 74 (1987) 221–232.
[21]
Olova N., Krueger F., Andrews S., Oxley D., Berrens R.V., Branco M.R., Reik W., Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data, Genome Biol. 19 (2018).
[22]
Reinders J., Delucinge V.C., Theiler G., Chollet D., Descombes P., Paszkowski J., Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion, Genome Res. 18 (2008) 469–476.
[23]
Rigby R.A., Stasinopoulos D.M., Hardle W., Schimek M.G. (Eds.), Statistical Theory and Computational Aspects of Smoothing, Heidelberg: Physica, 1996, pp. 215–230. Chapter Mean and dispersion additive models,.
[24]
Rigby R.A., Stasinopoulos D.M., A semi-parametric additive model for variance heterogeneity, Stat. Comput. 6 (1996) 57–65.
[25]
Rigby R.A., Stasinopoulos D.M., Generalized additive models for location, scale and shape,(with discussion), Appl. Stat. 54 (2005) 507–554.
[26]
Robinson M.D., Kahraman A., Law C.W., Lindsay H., Nowicka M., Weber L.M., Zhou X., Statistical methods for detecting differentially methylated loci and regions, Front. Genet. 5 (324) (2014).
[27]
Ruppert D., Wand M.P., Carroll R.J., Semiparametric Regression, Cambridge University Press, 2003.
[28]
Shafi A., Mitrea C., Nguyen T., Draghici S., A survey of the approaches for identifying differential methylation using bisulfite sequencing data, Brief. Bioinform. 19 (5) (2018) 737–753.
[29]
van Buuren S., Fredriks M., Worm plot: A simple diagnostic device for modelling growth reference curves, Stat. Med. 20 (2001) 1259–1277.
[30]
Wood S.N., Modelling and smoothing parameter estimation with multiple quadratic penalties, J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (2000) 413–428.
[31]
Wood S.N., On p-values for smooth components of an extended generalized additive model, Biometrika 100 (2013) 221–228.
[32]
Wood S.N, Generalized Additive Models: An Introduction with R, second ed., Chapman and Hall/CRC, 2017.
[33]
Zhao K., Oualkacha K., Lakhal-Chaieb L., Labbe A., Klein K., Ciampi A., Hudson M., Colmegna I., Pastinen T., Zhang T., Daley D., Greenwood C.M.T., A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation, Biometrics 77 (2) (2021) 424–438.
[34]
Ziller M.J., Gu H., Müller F., Donaghey J., Tsai L.T.Y., Kohlbacher O., De Jager P.L., Rosen E.D., Bennett D.A., Bernstein B.E., Gnirke A., Meissner A., Charting a dynamic DNA methylation landscape of the human genome, Nature 500 (2013).
Recommendations
Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates
Motivation: Methylation of cytosines in DNA plays an important role in the regulation of gene expression, and the analysis of methylation patterns is fundamental for the understanding of cell differentiation, aging processes, diseases and cancer ...
Modeling Methylation Patterns with Long Read Sequencing Data
Variation in cytosine methylation at CpG dinucleotides is often observed in genomic regions, and analysis typically focuses on estimating the proportion of methylated sites observed in a given region and comparing these levels across samples to ...
Comments
Information & Contributors
Information
Published In
The Author(s).
Publisher
Elsevier Science Publishers B. V.
Netherlands
Publication History
Published: 24 July 2024
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025