Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Identifying potential Alzheimer's disease therapeutics through GSK-3β inhibition: : A molecular docking and dynamics approach

Published: 01 August 2024 Publication History

Abstract

Emerging as a promising drug target for Alzheimer's disease (AD) therapy, glycogen synthase kinase 3β (GSK-3β) has garnered attention. This study sought to rigorously scrutinize a compendium of natural compounds retrieved from the ZINC database through pharmacodynamic experiments, employing a 1 H-indazole-3-carboxamide (INDZ) scaffold, to identify compounds capable of inhibiting the GSK-3β protein. Utilizing a multi-step approach, the study involved pharmacophore analysis, followed by molecular docking to select five promising ligands for further investigation. Subsequently, ESMACS simulations were employed to assess the stability of the ligand-protein interactions. Evaluation of the binding modes and free energy of the ligands revealed that five compounds (2a-6a) exhibited crucial interactions with the active site residues. Furthermore, various methodologies, including hydrogen bond and clustering analyses, were utilized to ascertain their inhibitory potential and elucidate the factors contributing to ligand binding in the protein's active site. The findings from MMPBSA/GBSA analysis indicated that these five selected small molecules closely approached the IC50 value of the reference ligand (OH8), yielding energy values of −34.85, −32.58, −31.71, and −30.39 kcal/mol, respectively. Additionally, an assessment of the interactions using hydrogen bond and dynamic analyses delineated the effective binding of the ligands with the binding pockets in the protein. Through computational analysis, we obtained valuable insights into the molecular mechanisms of GSK-3β, aiding in the development of more potent inhibitors.

Graphical Abstract

Display Omitted

Highlights

We used molecular docking and dynamics to find natural compounds inhibiting gsk-3β, a target for Alzheimer's therapy.
Utilized a multi-step computational approach, including pharmacophore analysis, docking, and ESMACS simulations, to assess ligands.
Identified five compounds with significant inhibitory potential against gsk-3β, based on binding modes and free energy.
Provided insights into gsk-3β inhibition mechanisms through hydrogen bond and clustering analyses of ligand-protein interactions.
Highlighted five small molecules as promising therapeutic candidates for Alzheimer's, with IC50 values close to the reference ligand.

References

[1]
I. Akbarzadeh, A. Saremi Poor, M. Khodarahmi, M. Abdihaji, A. Moammeri, S. Jafari, et al., Gingerol/letrozole-loaded mesoporous silica nanoparticles for breast cancer therapy: In-silico and in-vitro studies, Microporous Mesoporous Mater. 337 (2022).
[2]
R. Bhat, Y. Xue, S. Berg, S. Hellberg, M. Ormö, Y. Nilsson, et al., Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418, J. Biol. Chem. 278 (46) (2003) 45937–45945.
[3]
A.P. Bhati, S. Wan, D.W. Wright, P.V. Coveney, Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration, J. Chem. Theory Comput. 13 (1) (2017) 210–222.
[4]
Z. Breijyeh, R. Karaman, Comprehensive review on Alzheimer's disease: causes and treatment, Molecules 25 (24) (2020).
[5]
R. Buonfiglio, F. Prati, M. Bischetti, C. Cavarischia, G. Furlotti, R. Ombrato, Discovery of novel imidazopyridine GSK-3β inhibitors supported by computational approaches, Molecules 25 (9) (2020) 2163.
[6]
D.A. Case, H.M. Aktulga, K. Belfon, D.S. Cerutti, G.A. Cisneros, V.W.D. Cruzeiro, et al., AmberTools, J. Chem. Inf. Model. (2023).
[7]
P. Cohen, Protein kinases—the major drug targets of the twenty-first century?, Nat. Rev. Drug Discov. 1 (4) (2002) 309–315.
[8]
P.V. Coveney, S. Wan, On the calculation of equilibrium thermodynamic properties from molecular dynamics, Phys. Chem. Chem. Phys. 18 (44) (2016) 30236–30240.
[9]
J. Cummings, G. Lee, A. Ritter, M. Sabbagh, K. Zhong, Alzheimer's disease drug development pipeline: 2019, Alzheimer'S. Dement.: Transl. Res. Clin. Interv. 5 (2019) 272–293.
[10]
P. Czeleń, Molecular dynamics study on inhibition mechanism of CDK-2 and GSK-3β by CHEMBL272026 molecule, Struct. Chem. 27 (2016) 1807–1818.
[11]
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577–8593.
[12]
B. Farasati Far, S. Asadi, M.R. Naimi-Jamal, W.K. Abdelbasset, A. Aghajani Shahrivar, Insights into the interaction of azinphos-methyl with bovine serum albumin: experimental and molecular docking studies, J. Biomol. Struct. Dyn. 40 (22) (2022) 11863–11873.
[13]
B. Farasati Far, D. Bokov, G. Widjaja, H. Setia Budi, W. Kamal Abdelbasset, S. Javanshir, et al., Metronidazole, acyclovir and tetrahydrobiopterin may be promising to treat COVID-19 patients, through interaction with interleukin-12, J. Biomol. Struct. Dyn. 41 (10) (2023) 4253–4271.
[14]
F. Hernández, E.G. de Barreda, A. Fuster-Matanzo, J.J. Lucas, J. Avila, GSK3: a possible link between beta amyloid peptide and tau protein, Exp. Neurol. 223 (2) (2010) 322–325.
[15]
B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (12) (1997) 1463–1472.
[16]
B. Honarvari, S. Karimifard, N. Akhtari, M. Mehrarya, Z.S. Moghaddam, M.J. Ansari, et al., Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In Silico and In Vitro study, Molecules 27 (14) (2022) 4634.
[17]
M. Khaleghian, H. Sahrayi, Y. Hafezi, M. Mirshafeeyan, Z.S. Moghaddam, B. Farasati Far, et al., In silico design and mechanistic study of niosome-encapsulated curcumin against multidrug-resistant Staphylococcus aureus biofilms, Front Microbiol 14 (2023) 1277533.
[18]
P. Khanal, F. Zargari, B.F. Far, D. Kumar, Y.K. Mahdi, N.K. Jubair, et al., Integration of system biology tools to investigate huperzine A as an anti-Alzheimer agent, Front Pharm. 12 (2021).
[19]
M.A. Khanfar, R.A. Hill, A. Kaddoumi, K.A. El Sayed, Discovery of novel GSK-3β inhibitors with potent in vitro and in vivo activities and excellent brain permeability using combined ligand-and structure-based virtual screening, J. Med. Chem. 53 (24) (2010) 8534–8545.
[20]
B. Knapp, L. Ospina, C.M. Deane, Avoiding false positive conclusions in molecular simulation: the importance of replicas, J. Chem. Theory Comput. 14 (12) (2018) 6127–6138.
[21]
A. Kumar, G. Srivastava, A.S. Negi, A. Sharma, Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β, J. Biomol. Struct. Dyn. 37 (2) (2019) 275–290.
[22]
P. Manoharan, N. Ghoshal, Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads, J. Biomol. Struct. Dyn. 36 (7) (2018) 1878–1892.
[23]
M. Maqbool, M. Mobashir, N. Hoda, Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer's disease, Eur. J. Med. Chem. 107 (2016) 63–81.
[24]
V. Montagnani, B. Stecca, Role of protein kinases in hedgehog pathway control and implications for cancer therapy, Cancers 11 (4) (2019) 449.
[25]
R.D. Paris, C.V. Quevedo, D.D. Ruiz, Souza ONd, Barros RC. Clustering molecular dynamics trajectories for optimizing docking experiments, Comput. Intell. Neurosci. 2015 (2015) 32.
[26]
S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases, ACS Publications, 2008.
[27]
H. Sahrayi, E. Hosseini, A. Ramazani Saadatabadi, S.M. Atyabi, H. Bakhshandeh, M. Mohamadali, et al., Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering, Artif. Organs 46 (8) (2022) 1504–1521.
[28]
A.P. Saraswati, S.A. Hussaini, N.H. Krishna, B.N. Babu, A. Kamal, Glycogen synthase kinase-3 and its inhibitors: potential target for various therapeutic conditions, Eur. J. Med. Chem. 144 (2018) 843–858.
[29]
S. Sargazi, S. Shahraki, O. Shahraki, F. Zargari, R. Sheervalilou, S. Maghsoudi, et al., 8-Alkylmercaptocaffeine derivatives: antioxidant, molecular docking, and in-vitro cytotoxicity studies, Bioorg. Chem. 111 (2021).
[30]
P. Tellechea, N. Pujol, P. Esteve-Belloch, B. Echeveste, M. García-Eulate, J. Arbizu, M. Riverol, Early-and late-onset Alzheimer disease: are they the same entity?, Neurol. ía (Engl. Ed. ) 33 (4) (2018) 244–253.
[31]
E. Ter Haar, J.T. Coll, D.A. Austen, H.-M. Hsiao, L. Swenson, J. Jain, Structure of GSK3β reveals a primed phosphorylation mechanism, Nat. Struct. Biol. 8 (7) (2001) 593–596.
[32]
A.J. Valvezan, P.S. Klein, GSK-3 and Wnt signaling in neurogenesis and bipolar disorder, Front. Mol. Neurosci. 5 (2012) 1.
[33]
S. Wan, R.C. Sinclair, P.V. Coveney, Uncertainty quantification in classical molecular dynamics, Philos. Trans. R. Soc. A 379 (2197) (2021) 20200082.
[34]
Z. Wang, H. Sun, X. Yao, D. Li, L. Xu, Y. Li, et al., Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power, Phys. Chem. Chem. Phys. 18 (18) (2016) 12964–12975.
[35]
S. Zare, L. Emami, Z. Faghih, F. Zargari, Z. Faghih, S. Khabnadideh, Design, synthesis, computational study and cytotoxic evaluation of some new quinazoline derivatives containing pyrimidine moiety, Sci. Rep. 13 (1) (2023) 14461.
[36]
F. Zargari, Z. Nikfarjam, E. Nakhaei, M. Ghorbanipour, A. Nowroozi, A. Amiri, Study of tyramine-binding mechanism and insecticidal activity of oil extracted from Eucalyptus against Sitophilus oryzae, Front. Chem. 10 (2022).
[37]
D. Zhang, L. Liu, L. Pang, Q. Jin, K. Ke, M. Hu, et al., Biological evaluation and energetic analyses of novel GSK-3β inhibitors, J. Cell. Biochem. 119 (4) (2018) 3510–3518.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computational Biology and Chemistry
Computational Biology and Chemistry  Volume 111, Issue C
Aug 2024
138 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 August 2024

Author Tags

  1. Glycogen synthase kinase 3β (GSK-3β)
  2. Alzheimer's disease (AD)
  3. 1H-indazole-3-carboxamide (INDZ)
  4. Molecular docking
  5. Molecular dynamics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media