Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: : A narrative review of integrated approaches using carotid ultrasound

Published: 01 November 2020 Publication History

Abstract

Recent findings

Cardiovascular disease (CVD) is the leading cause of mortality and poses challenges for healthcare providers globally. Risk-based approaches for the management of CVD are becoming popular for recommending treatment plans for asymptomatic individuals. Several conventional predictive CVD risk models based do not provide an accurate CVD risk assessment for patients with different baseline risk profiles. Artificial intelligence (AI) algorithms have changed the landscape of CVD risk assessment and demonstrated a better performance when compared against conventional models, mainly due to its ability to handle the input nonlinear variations. Further, it has the flexibility to add risk factors derived from medical imaging modalities that image the morphology of the plaque. The integration of noninvasive carotid ultrasound image-based phenotypes with conventional risk factors in the AI framework has further provided stronger power for CVD risk prediction, so-called “integrated predictive CVD risk models.”

Purpose

of the review: The objective of this review is (i) to understand several aspects in the development of predictive CVD risk models, (ii) to explore current conventional predictive risk models and their successes and challenges, and (iii) to refine the search for predictive CVD risk models using noninvasive carotid ultrasound as an exemplar in the artificial intelligence-based framework.

Conclusion

Conventional predictive CVD risk models are suboptimal and could be improved. This review examines the potential to include more noninvasive image-based phenotypes in the CVD risk assessment using powerful AI-based strategies.

Highlights

Cardiovascular disease (CVD) risk prediction algorithms are becoming popular for recommending treatment plans for asymptomatic individuals.
However, there are several challenges associated with conventional CVD risk calculators.
Recent studies have combined carotid ultrasound image phenotypes and conventional CVD risk factors to predict the 10-year CVD/stroke risk.
Artificial intelligence-based algorithms are currently being explored to provide better CVD risk assessment.
This review summarizes conventional, integrated, and artificial intelligence-based CVD risk prediction algorithms.

References

[1]
W.H. Organization, WHO Cardiovascular disease.
[2]
J.A. Damen, L. Hooft, E. Schuit, T.P. Debray, G.S. Collins, I. Tzoulaki, C.M. Lassale, G.C. Siontis, V. Chiocchia, C. Roberts, Prediction models for cardiovascular disease risk in the general population: systematic review, BMJ 353 (2016) i2416.
[3]
A.D. Beswick, P. Brindle, T. Fahey, S. Ebrahim, A Systematic Review of Risk Scoring Methods and Clinical Decision Aids Used in the Primary Prevention of Coronary Heart Disease (Supplement), Royal College of General Practitioners, London, 2008.
[4]
T.A. Pearson, S.N. Blair, S.R. Daniels, R.H. Eckel, J.M. Fair, S.P. Fortmann, B.A. Franklin, L.B. Goldstein, P. Greenland, S.M. Grundy, AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases, Circulation 106 (2002) 388–391.
[5]
Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease, Royal College of General Practitioners, London, 2008.
[6]
W.H. Organization, Package of Essential Noncommunicable (PEN) Disease Interventions for Primary Health Care in Low-Resource Settings, 2010.
[7]
D.C. Goff, D.M. Lloyd-Jones, G. Bennett, S. Coady, R.B. D’agostino, R. Gibbons, P. Greenland, D.T. Lackland, D. Levy, C.J. O’Donnell, ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American heart association task force on practice guidelines, J. Am. Coll. Cardiol. 63 (2013) 2935–2959. 2014.
[8]
E. Lalor, A. Boyden, D. Cadilhac, S. Colagiur, J. Doust, D. Fraser, M. Harris, N. Huang, D. Johnson, G. Johnson, Guidelines for the Management of Absolute Cardiovascular Disease Risk, 2012.
[9]
Z. Reiner, A. Catapano, G. De Backer, I. Graham, M. Taskinen, O. Wiklund, S. Agewall, E. Alegria, M. Chapman, ESC committee for practice guidelines (CPG) 2008-2010 and 2010-2012 committees. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of Cardiology (ESC) and the European atherosclerosis society (EAS), Eur. Heart J. 32 (2011) 1769–1818.
[10]
R.B. D’Agostino, R.S. Vasan, M.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, General cardiovascular risk profile for use in primary care: the Framingham Heart Study, Circulation 117 (2008) 743–753.
[11]
R. Conroy, K. Pyörälä, A.E. Fitzgerald, S. Sans, A. Menotti, G. De Backer, D. De Bacquer, P. Ducimetiere, P. Jousilahti, U. Keil, Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project, Eur. Heart J. 24 (2003) 987–1003.
[12]
P.M. Ridker, J.E. Buring, N. Rifai, N.R. Cook, Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score, Jama 297 (2007) 611–619.
[13]
J. Hippisley-Cox, C. Coupland, P. Brindle, Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study, BMJ 357 (2017) 1–12.
[14]
B.A. Goldstein, A.M. Navar, R.E. Carter, Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges, Eur. Heart J. 38 (2016) 1805–1814.
[15]
A.M. Alaa, T. Bolton, E. Di Angelantonio, J.H. Rudd, M. van Der Schaar, Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants, PloS One 14 (2019).
[16]
S. Suzuki, T. Yamashita, T. Sakama, T. Arita, N. Yagi, T. Otsuka, H. Semba, H. Kano, S. Matsuno, Y. Kato, Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis, PloS One 14 (2019).
[17]
S.F. Weng, J. Reps, J. Kai, J.M. Garibaldi, N. Qureshi, Can machine-learning improve cardiovascular risk prediction using routine clinical data?, PloS One 12 (2017).
[18]
R.B. D'agostino, P.A. Wolf, A.J. Belanger, W.B. Kannel, Stroke risk profile: Adjustment for antihypertensive medication, The Framingham Study, Stroke 25 (1994) 40–43.
[19]
T.-P. van Staa, M. Gulliford, E.S.-W. Ng, B. Goldacre, L. Smeeth, Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk?, PloS One 9 (2014).
[20]
G.M. Allan, S. Garrison, J. McCormack, Comparison of cardiovascular disease risk calculators, Curr. Opin. Lipidol. 25 (2014) 254–265.
[21]
R.L. Coleman, R.J. Stevens, R. Retnakaran, R.R. Holman, Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes, Diabetes Care 30 (2007) 1292.
[22]
K.-L. Chien, H.-J. Lin, T.-C. Su, Y.-Y. Chen, P.-C. Chen, Comparing the consistency and performance of various coronary heart disease prediction models for primary prevention using a national representative cohort in taiwan, Circ. J. 82 (7) (2018) 1805–1812,.
[23]
D. Bansal, R.S. Nayakallu, K. Gudala, R. Vyamasuni, A. Bhansali, Agreement between Framingham risk score and United Kingdom Prospective Diabetes Study risk engine in identifying high coronary heart disease risk in North Indian population, Diabetes & metabolism journal 39 (2015) 321–327.
[24]
E. Alemao, H. Cawston, F. Bourhis, M. Al, M. Rutten-van Molken, K.P. Liao, D.H. Solomon, Comparison of cardiovascular risk algorithms in patients with vs without rheumatoid arthritis and the role of C-reactive protein in predicting cardiovascular outcomes in rheumatoid arthritis, Rheumatology 56 (2017) 777–786.
[25]
C.S. Crowson, S. Rollefstad, G.D. Kitas, P.L. Van Riel, S.E. Gabriel, A.G. Semb, Challenges of developing a cardiovascular risk calculator for patients with rheumatoid arthritis, PloS One 12 (2017).
[26]
P.M. Ridker, N.P. Paynter, N. Rifai, J.M. Gaziano, N.R. Cook, C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men, Circulation 118 (2008) 2243–2251.
[27]
G. Assmann, P. Cullen, H. Schulte, Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study, Circulation 105 (2002) 310–315.
[28]
W.H. Organization, WHO/ISH Cardiovascular Risk Prediction Charts, Prevention of Cardiovascular Disease: Guideline for Assessment and Management of Cardiovascular Risk, WHO, Geneva, 2007.
[29]
A. Boi, A.D. Jamthikar, L. Saba, D. Gupta, A. Sharma, B. Loi, J.R. Laird, N.N. Khanna, J.S. Suri, A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography, Curr. Atherosclerosis Rep. 20 (2018) 33.
[30]
V. Kotsis, A.D. Jamthikar, T. Araki, D. Gupta, J.R. Laird, A.A. Giannopoulos, L. Saba, H.S. Suri, S. Mavrogeni, G.D. Kitas, K. Viskovic, N.N. Khanna, A. Gupta, A. Nicolaides, J.S. Suri, Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients, Diabetes Res. Clin. Pract. 143 (2018) 322–331.
[31]
N.N. Khanna, A.D. Jamthikar, D. Gupta, A. Nicolaides, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A. Protogerou, P.P. Sfikakis, G.D. Kitas, V. Viswanathan, J.S. Suri, Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: a diabetic study, Comput. Biol. Med. 105 (2019) 125–143.
[32]
N.N. Khanna, A.D. Jamthikar, T. Araki, D. Gupta, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J.R. Laird, H.S. Suri, A. Gupta, S. Mavrogeni, G.D. Kitas, J.S. Suri, Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: A Japanese diabetes cohort study, Echocardiography 36 (2) (2019) 345–361,.
[33]
N.N. Khanna, A.D. Jamthikar, D. Gupta, T. Araki, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J.R. Laird, H.S. Suri, A. Gupta, S. Mavrogeni, A.D. Protogerou, P. Sfikakis, G.D. Kitas, J.S. Suri, Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0, Med. Biol. Eng. Comput. 57 (2019) 1553–1566.
[34]
A. Jamthikar, D. Gupta, N.N. Khanna, L. Saba, T. Araki, K. Viskovic, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, V. Viswanathan, A. Nicolaides, D.L. Bhatt, J.S. Suri, A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes, Cardiovasc. Diagn. Ther. 9 (2019) 420–430.
[35]
J.S. Suri, C. Yuan, D.L. Wilson, Plaque Imaging: Pixel to Molecular Level, IOS Press 2005.
[36]
J.S. Suri, S. Laxminarayan, Angiography and Plaque Imaging: Advanced Segmentation Techniques, CRC press 2003.
[37]
L. Saba, J.S. Suri, Multi-Detector CT Imaging: Principles, Head, Neck, and Vascular Systems, CRC Press 2013.
[38]
L.S. Rikin Trivedi, Jasjit S. Suri, L.S. Rikin Trivedi, Jasjit S. Suri (Eds.), 3D Imaging Technologies in Atherosclerosis, Springer, 2015.
[39]
J.M. Tarkin, M.R. Dweck, N.R. Evans, R.A. Takx, A.J. Brown, A. Tawakol, Z.A. Fayad, J.H. Rudd, Imaging atherosclerosis, Circ. Res. 118 (2016) 750–769.
[40]
L. Saba, J.M. Sanches, L.M. Pedro, J.S. Suri, Multi-modality Atherosclerosis Imaging and Diagnosis, Springer, 2014.
[41]
J.S. Suri, C. Kathuria, F. Molinari, Atherosclerosis Disease Management, Springer Science & Business Media, 2010.
[42]
A. Laine, J.M. Sanches, J.S. Suri, Ultrasound Imaging: Advances and Applications, Springer, 2012.
[43]
K.W. Beach, Principles of ultrasonic imaging and instrumentation, in: A. Nicolaides, K.W. Beach, E. Kyriacou, C.S. Pattichis (Eds.), Ultrasound and Carotid Bifurcation Atherosclerosis, Springer London, London, 2012, pp. 67–96.
[44]
H. Baradaran, C.R. Ng, A. Gupta, N.M. Noor, K.W. Al-Dasuqi, E.E. Mtui, O.M. Rijal, A. Giannopoulos, A. Nicolaides, J.R. Laird, Extracranial internal carotid artery calcium volume measurement using computer tomography, Int. Angiol.: a journal of the International Union of Angiology 36 (2017) 445–461.
[45]
L. Saba, M. Atzeni, D. Ribuffo, G. Mallarini, J.S. Suri, Analysis of deep inferior epigastric perforator (DIEP) arteries by using MDCTA: comparison between 2 post-processing techniques, Eur. J. Radiol. 81 (2012) 1828–1833.
[46]
L. Saba, R. Sanfilippo, M. di Martino, M. Porcu, R. Montisci, P. Lucatelli, M. Anzidei, M. Francone, J.S. Suri, Volumetric analysis of carotid plaque components and cerebral microbleeds: a correlative study, J. Stroke Cerebrovasc. Dis. 26 (2017) 552–558.
[47]
H. Baradaran, P. Patel, G. Gialdini, A. Giambrone, M.P. Lerario, B.B. Navi, J.K. Min, C. Iadecola, H. Kamel, A. Gupta, Association between intracranial atherosclerotic calcium burden and angiographic luminal stenosis measurements, Am. J. Neuroradiol. 38 (2017) 1723–1729.
[48]
A. Gupta, K. Kesavabhotla, H. Baradaran, H. Kamel, A. Pandya, A.E. Giambrone, D. Wright, K.J. Pain, E.E. Mtui, J.S. Suri, Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis, Stroke 46 (2015) 91–97.
[49]
S.K. Banchhor, N.D. Londhe, T. Araki, L. Saba, P. Radeva, N.N. Khanna, J.S. Suri, Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: a review, Comput. Biol. Med. 101 (2018) 184–198.
[50]
J. Narula, M. Nakano, R. Virmani, F.D. Kolodgie, R. Petersen, R. Newcomb, S. Malik, V. Fuster, A.V. Finn, Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques, J. Am. Coll. Cardiol. 61 (2013) 1041–1051.
[51]
P. Radeva, J.S. Suri, IOP ebooks Plaque characterization, Petia Radeva, Jasjit S. Suri (Eds.), Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2; Plaque Characterization, Vascular and Intravascular Imaging Trends, Analysis, and Challenges, 2, IOP Publishing, Bristol, UK, ISBN 978-0-7503-1999-7, 2019, (2019).
[52]
L. Saba, A. Jamthikar, D. Gupta, N.N. Khanna, K. Viskovic, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P. Sfikakis, A. Protogerou, G.D. Kitas, V. Viswanathan, A. Nicolaides, D. Bhatt, J.S. Suri, Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited?, Int. Angiol. : a journal of the International Union of Angiology 38 (2019) 451–465.
[53]
A. Jamthikar, D. Gupta, N.N. Khanna, T. Araki, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A.D. Protogerou, P. Sfikakis, G.D. Kitas, V. Viswanathan, G. Pareek, M. Miner, J.S. Suri, A special report on changing trends in preventive stroke/cardiovascular risk assessment via B-mode ultrasonography, Curr. Atherosclerosis Rep. 21 (2019) 25.
[54]
N.N. Khanna, A.D. Jamthikar, D. Gupta, M. Piga, L. Saba, C. Carcassi, A.A. Giannopoulos, A. Nicolaides, J.R. Laird, H.S. Suri, S. Mavrogeni, A.D. Protogerou, P. Sfikakis, G.D. Kitas, J.S. Suri, Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization, Curr. Atherosclerosis Rep. 21 (2019) 7.
[55]
J.T. Salonen, R. Salonen, Ultrasonographically assessed carotid morphology and the risk of coronary heart disease, Arterioscler. Thromb. Vasc. Biol. 11 (1991) 1245–1249.
[56]
M.L. Bots, A.W. Hoes, P.J. Koudstaal, A. Hofman, D.E. Grobbee, Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study, Circulation 96 (1997) 1432–1437.
[57]
L.E. Chambless, G. Heiss, A.R. Folsom, W. Rosamond, M. Szklo, A.R. Sharrett, L.X. Clegg, Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993, Am. J. Epidemiol. 146 (1997) 483–494.
[58]
L.E. Chambless, A.R. Folsom, L.X. Clegg, A.R. Sharrett, E. Shahar, F.J. Nieto, W.D. Rosamond, G. Evans, Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study, Am. J. Epidemiol. 151 (2000) 478–487.
[59]
M.W. Lorenz, S. von Kegler, H. Steinmetz, H.S. Markus, M. Sitzer, Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS), Stroke 37 (2006) 87–92.
[60]
D.H. O'Leary, J.F. Polak, R.A. Kronmal, T.A. Manolio, G.L. Burke, S.K. Wolfson Jr., Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults, N. Engl. J. Med. 340 (1999) 14–22.
[61]
J.F. Polak, M.J. Pencina, K.M. Pencina, C.J. O'Donnell, P.A. Wolf, R.B. D'Agostino Sr., Carotid-wall intima-media thickness and cardiovascular events, N. Engl. J. Med. 365 (2011) 213–221.
[62]
M. Rosvall, L. Janzon, G. Berglund, G. Engström, B. Hedblad, Incident coronary events and case fatality in relation to common carotid intima‐media thickness, J. Intern. Med. 257 (2005) 430–437.
[63]
M.W. Lorenz, M. Sitzer, H.S. Markus, M.L. Bots, M. Rosvall, Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis-Response, Circulation 116 (2007) 318-318.
[64]
J.D. Spence, M. Eliasziw, M. DiCicco, D.G. Hackam, R. Galil, T. Lohmann, Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy, Stroke 33 (2002) 2916–2922.
[65]
E. Cuadrado-Godia, S.K. Srivastava, L. Saba, T. Araki, H.S. Suri, A. Giannopolulos, T. Omerzu, J. Laird, N.N. Khanna, S. Mavrogeni, G.D. Kitas, A. Nicolaides, J.S. Suri, Geometric total plaque area is an equally powerful phenotype compared with carotid intima-media thickness for stroke risk assessment: a deep learning approach, J. Vasc. Ultrasound 42 (4) (2018) 162–188,.
[66]
E. Cuadrado-Godia, M. Maniruzzaman, T. Araki, A. Puvvula, M.J. Rahman, L. Saba, H.S. Suri, A. Gupta, S.K. Banchhor, J.S. Teji, Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort, Comput. Biol. Med. 101 (2018) 128–145.
[67]
J.H. Stein, C.E. Korcarz, R.T. Hurst, E. Lonn, C.B. Kendall, E.R. Mohler, S.S. Najjar, C.M. Rembold, W.S. Post, Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine, J. Am. Soc. Echocardiogr. 21 (2008) 93–111.
[68]
Y. Inaba, J.A. Chen, S.R. Bergmann, Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis, Atherosclerosis 220 (2012) 128–133.
[69]
V. Viswanathan, A.D. Jamthikar, D. Gupta, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, J.N.A. Ajuluchukwu, P.P. Sfikakis, A. Protogerou, G.D. Kitas, A. Nicolaides, A. Sharma, J.S. Suri, Integration of eGFR biomarker in image-based CV/Stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease, Int. Angiol. : a journal of the International Union of Angiology 39 (4) (2020) 290–306,.
[70]
A. Jamthikar, D. Gupta, L. Saba, N.N. Khanna, T. Araki, K. Viskovic, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, V. Viswanathan, A. Sharma, A. Nicolaides, G.D. Kitas, J.S. Suri, Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models, Cardiovasc. Diagn. Ther. 10 (4) (2020) 919–938,.
[71]
V. Viswanathan, A.D. Jamthikar, D. Gupta, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, A. Nicolaides, A. Sharma, J.S. Suri, Does the carotid bulb offer a better 10-year CVD/stroke risk assessment compared with the common carotid artery?: a 1516 ultrasound scan study, Angiology 71 (10) (2020) 920–933,.
[72]
E. Cuadrado-Godia, A.D. Jamthikar, D. Gupta, N.N. Khanna, T. Araki, M. Maniruzzaman, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A.D. Protogerou, P. Sfikakis, G.D. Kitas, J.S. Suri, Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: logistic regression approach, Comput. Biol. Med. 108 (2019) 182–195.
[73]
P. Muntendam, C. McCall, J. Sanz, E. Falk, V. Fuster, The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease--study design and objectives, Am. Heart J. 160 (2010) 49–57 e41.
[74]
U. Baber, R. Mehran, S. Sartori, M.M. Schoos, H. Sillesen, P. Muntendam, M.J. Garcia, J. Gregson, S. Pocock, E. Falk, Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study, J. Am. Coll. Cardiol. 65 (2015) 1065–1074.
[75]
M. Herder, S.H. Johnsen, K.A. Arntzen, E.B. Mathiesen, Risk factors for progression of carotid intima-media thickness and total plaque area: a 13-year follow-up study: the Tromso Study, Stroke 43 (2012) 1818–1823.
[76]
L. Saba, M. Biswas, V. Kuppili, E.C. Godia, H.S. Suri, D.R. Edla, T. Omerzu, J.R. Laird, N.N. Khanna, S. Mavrogeni, The present and future of deep learning in radiology, Eur. J. Radiol. 114 (2019) 14–24,.
[77]
M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, E. Cuadrado-Godia, J.R. Laird, R.T. Marinhoe, J.M. Sanches, A. Nicolaides, State-of-the-art review on deep learning in medical imaging, Frontiers in bioscience (Landmark edition) 24 (2019) 392–426.
[78]
G. Tandel, M. Biswas, G.K. O, A. Tiwari, H.S. Suri, M. Turk, J.R. Laird, C.K. Asare, A.A. Ankrah, N.N. Khanna, B.K. Madhusudhan, L. Saba, J.S. Suri, A review on a deep learning perspective in brain cancer classification, Cancers (2019) 11.
[79]
M. Biswas, V. Kuppili, T. Araki, D.R. Edla, E.C. Godia, L. Saba, H.S. Suri, T. Omerzu, J.R. Laird, N.N. Khanna, A. Nicolaides, J.S. Suri, Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort, Comput. Biol. Med. 98 (2018) 100–117.
[80]
I.A. Kakadiaris, M. Vrigkas, A.A. Yen, T. Kuznetsova, M. Budoff, M. Naghavi, Machine learning outperforms ACC/AHA CVD risk calculator in MESA, Journal of the American Heart Association 7 (2018).
[81]
E.D. Peterson, Machine learning, predictive analytics, and clinical practice: can the past inform the present?, J. Am. Med. Assoc. 322 (23) (2019) 2283–2284,.
[82]
J.B.S. Board, Joint British Societies' consensus recommendations for the prevention of cardiovascular disease (JBS3), Heart 100 (2014) ii1–ii67.
[83]
K. Hajifathalian, P. Ueda, Y. Lu, M. Woodward, A. Ahmadvand, C.A. Aguilar-Salinas, F. Azizi, R. Cifkova, M. Di Cesare, L. Eriksen, A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys, The lancet Diabetes & endocrinology 3 (2015) 339–355.
[84]
P. Ueda, M. Woodward, Y. Lu, K. Hajifathalian, R. Al-Wotayan, C.A. Aguilar-Salinas, A. Ahmadvand, F. Azizi, J. Bentham, R. Cifkova, Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys, The lancet Diabetes & endocrinology 5 (2017) 196–213.
[85]
T.J. Anderson, J. Grégoire, G.J. Pearson, A.R. Barry, P. Couture, M. Dawes, G.A. Francis, J. Genest, S. Grover, M. Gupta, R.A. Hegele, D.C. Lau, L.A. Leiter, E. Lonn, G.B.J. Mancini, R. McPherson, D. Ngui, P. Poirier, J.L. Sievenpiper, J.A. Stone, G. Thanassoulis, R. Ward, Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult, Can. J. Cardiol. 32 (2016) 1263–1282. 2016.
[86]
T.J. Anderson, J. Grégoire, R.A. Hegele, P. Couture, G.J. Mancini, R. McPherson, G.A. Francis, P. Poirier, D.C. Lau, S. Grover, Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult, Can. J. Cardiol. 29 (2012) 151–167. 2013.
[87]
N.J. Bosomworth, Practical use of the Framingham risk score in primary prevention: Canadian perspective, Canadian family physician Medecin de famille canadien 57 (2011) 417–423.
[88]
M. Duerden, N. O'Flynn, N. Qureshi, Cardiovascular risk assessment and lipid modification: NICE guideline, Br. J. Gen. Pract. 65 (2015) 378–380.
[89]
NICE, Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modifification, 2014.
[90]
A. Cooper, N. O'Flynn, G. Guideline Development, Risk assessment and lipid modification for primary and secondary prevention of cardiovascular disease: summary of NICE guidance, BMJ (Clinical research ed.) 336 (2008) 1246–1248.
[91]
Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement, Ann. Intern. Med. 151 (2009) 474–482.
[92]
K. Bibbins-Domingo, D.C. Grossman, S.J. Curry, K.W. Davidson, J.W. Epling, F.A. García, M.W. Gillman, A.R. Kemper, A.H. Krist, A.E. Kurth, Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement, Jama 316 (2016) 1997–2007.
[93]
S.J. Curry, A.H. Krist, D.K. Owens, M.J. Barry, A.B. Caughey, K.W. Davidson, C.A. Doubeni, J.W. Epling, A.R. Kemper, M. Kubik, Screening for cardiovascular disease risk with electrocardiography: US preventive services task force recommendation statement, Jama 319 (2018) 2308–2314.
[94]
N.R. Cook, N.P. Paynter, C.B. Eaton, J.E. Manson, L.W. Martin, J.G. Robinson, J.E. Rossouw, S. Wassertheil-Smoller, P.M. Ridker, Comparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative, Circulation 111 (2012).
[95]
H.K. Neuhauser, U. Ellert, B.-M. Kurth, A comparison of Framingham and SCORE-based cardiovascular risk estimates in participants of the German national health interview and examination survey 1998, Eur. J. Cardiovasc. Prev. Rehabil. 12 (2005) 442–450.
[96]
T. de Las Heras Gala, M.H. Geisel, A. Peters, B. Thorand, J. Baumert, N. Lehmann, K.-H. Jöckel, S. Moebus, R. Erbel, C. Meisinger, Recalibration of the ACC/AHA risk score in two population-based German cohorts, PloS One 11 (2016).
[97]
S. Selvarajah, G. Kaur, J. Haniff, K.C. Cheong, T.G. Hiong, Y. van der Graaf, M.L. Bots, Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population, Int. J. Cardiol. 176 (2014) 211–218.
[98]
H.T. Jørstad, E.B. Colkesen, M. Minneboo, R.J. Peters, S.M. Boekholdt, J.G. Tijssen, N.J. Wareham, K.-T. Khaw, The Systematic COronary Risk Evaluation (SCORE) in a large UK population: 10-year follow-up in the EPIC-Norfolk prospective population study, European journal of preventive cardiology 22 (2015) 119–126.
[99]
T. Aspelund, G. Thorgeirsson, G. Sigurdsson, V. Gudnason, Estimation of 10-year risk of fatal cardiovascular disease and coronary heart disease in Iceland with results comparable with those of the Systematic Coronary Risk Evaluation project, Eur. J. Cardiovasc. Prev. Rehabil. 14 (2007) 761–768.
[100]
L. Chen, A.M. Tonkin, L. Moon, P. Mitchell, A. Dobson, G. Giles, M. Hobbs, P.J. Phillips, J.E. Shaw, D. Simmons, Recalibration and validation of the SCORE risk chart in the Australian population: the AusSCORE chart, Eur. J. Cardiovasc. Prev. Rehabil. 16 (2009) 562–570.
[101]
I. van Dis, D. Kromhout, J.M. Geleijnse, J.M. Boer, W.M. Verschuren, Evaluation of cardiovascular risk predicted by different SCORE equations: The Netherlands as an example, Eur. J. Cardiovasc. Prev. Rehabil. 17 (2010) 244–249.
[102]
R. Pylypchuk, S. Wells, A. Kerr, K. Poppe, T. Riddell, M. Harwood, D. Exeter, S. Mehta, C. Grey, B.P. Wu, Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study, Lancet 391 (2018) 1897–1907.
[103]
J. Suri, M. Turk, A. Jamthikar, D. Gupta, N. Khanna, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma, T. Omerzu, Performance evaluation of AECRS1. 0 using stroke risk calculators, European Journal of Neurology, Wiley 111 River ST, Hoboken 7030-5774, NJ USA (2019) 280–281.
[104]
E. Oikonomou, G. Vogiatzi, G. Lazaros, S. Tsalamandris, A. Goliopoulou, V. Mystakidou, P. Theofilis, E. Christoforatou, C. Chasikidis, D. Tousoulis, Relationship of depressive symptoms with arterial stiffness and carotid atherosclerotic burden in the Corinthia study, QJM: Int. J. Med. 113 (9) (2020) 633–642,.
[105]
L.J. Dietz, K.A. Matthews, Depressive symptoms and subclinical markers of cardiovascular disease in adolescents, J. Adolesc. Health 48 (2011) 579–584.
[106]
T.R. Dawber, G.F. Meadors, F.E. Moore Jr., Epidemiological approaches to heart disease: the Framingham Study, Am. J. Public Health Nation's Health 41 (1951) 279–286.
[107]
W.B. Kannel, M. Feinleib, P.M. McNAMARA, R.J. Garrison, W.P. Castelli, An investigation of coronary heart disease in families: the Framingham offspring study, Am. J. Epidemiol. 110 (1979) 281–290.
[108]
O. Williams, The atherosclerosis risk in Communities (ARIC) study-design and objectives, Am. J. Epidemiol. 129 (1989) 687–702.
[109]
L.P. Fried, N.O. Borhani, P. Enright, C.D. Furberg, J.M. Gardin, R.A. Kronmal, L.H. Kuller, T.A. Manolio, M.B. Mittelmark, A. Newman, The cardiovascular health study: design and rationale, Ann. Epidemiol. 1 (1991) 263–276.
[110]
G.D. Friedman, G.R. Cutter, R.P. Donahue, G.H. Hughes, S.B. Hulley, D.R. Jacobs Jr., K. Liu, P.J. Savage, CARDIA: study design, recruitment, and some characteristics of the examined subjects, J. Clin. Epidemiol. 41 (1988) 1105–1116.
[111]
D.E. Bild, D.A. Bluemke, G.L. Burke, R. Detrano, A.V. Diez Roux, A.R. Folsom, P. Greenland, D.R. Jacob Jr, R. Kronmal, K. Liu, Multi-ethnic study of atherosclerosis: objectives and design, Am. J. Epidemiol. 156 (2002) 871–881.
[112]
A. Kagan, J.S. Popper, G.G. Rhoads, Factors related to stroke incidence in Hawaii Japanese men. The Honolulu Heart Study, Stroke 11 (1980) 14–21.
[113]
Multiple risk factor intervention trial. Risk factor changes and mortality results. Multiple Risk Factor Intervention Trial Research Group, J. Am. Med. Assoc. 248 (1982) 1465–1477.
[114]
M. Garcia-Palmieri, M. Feliberti, R. Costas Jr., A. Colon, M. Cruz-Vidal, M. Cortes-Alicea, A. Ayala, R. Sobrino, R. Torres, An epidemiological study on coronary heart disease in Puerto Rico: the Puerto Rico Heart Health Program, Bol. Asoc. Med. P. R. 61 (1969) 174.
[115]
D.R. Cox, Regression models and life‐tables, J. Roy. Stat. Soc. B 34 (1972) 187–202.
[116]
J.A. Quesada, A. Lopez‐Pineda, V.F. Gil‐Guillén, R. Durazo‐Arvizu, D. Orozco‐Beltrán, A.L. Domenech, C. Carratalá‐Munuera, Machine learning to predict cardiovascular risk, Int. J. Clin. Pract. 73 (10) (2019),.
[117]
N. Garg, S.K. Muduli, A. Kapoor, S. Tewari, S. Kumar, R. Khanna, P.K. Goel, Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses, Indian Heart J. 69 (2017) 458–463.
[118]
L. Albarqouni, J.A. Doust, D. Magliano, E.L. Barr, J.E. Shaw, P.P. Glasziou, External validation and comparison of four cardiovascular risk prediction models with data from the Australian Diabetes, Obesity and Lifestyle study, Med. J. Aust. 210 (2019) 161–167.
[119]
K.M. Anderson, P. Wilson, P.M. Odell, W.B. Kannel, An updated coronary risk profile. A statement for health professionals, Circulation 83 (1991) 356–362.
[120]
F. Molinari, G. Zeng, J.S. Suri, An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique, J. Ultrasound Med. : official journal of the American Institute of Ultrasound in Medicine 29 (2010) 399–418.
[121]
J.S. Suri, K. Liu, S. Singh, S.N. Laxminarayan, X. Zeng, L. Reden, Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review, IEEE Trans. Inf. Technol. Biomed. 6 (2002) 8–28.
[122]
A. Puvvula, A.D. Jamthikar, D. Gupta, N.N. Khanna, M. Porcu, L. Saba, K. Viskovic, J.N.A. Ajuluchukwu, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, A. Nicolaides, V. Viswanathan, J.S. Suri, Morphological carotid plaque area is associated with glomerular filtration rate: a study of south asian Indian patients with diabetes and chronic kidney disease, Angiology 71 (6) (2020) 520–535,.
[123]
A.G. Gheorghe, C. Jacobsen, R. Thomsen, K. Linnet, N. Lynnerup, C.B. Andersen, A. Fuchs, K.F. Kofoed, J. Banner, Coronary artery CT calcium score assessed by direct calcium quantification using atomic absorption spectroscopy and compared to macroscopic and histological assessments, Int. J. Leg. Med. 133 (2019) 1485–1496.
[124]
M.J. Blaha, M.B. Mortensen, S. Kianoush, R. Tota-Maharaj, M. Cainzos-Achirica, Coronary artery calcium scoring: is it time for a change in methodology?, JACC (J. Am. Coll. Cardiol.): Cardiovascular Imaging 10 (2017) 923–937.
[125]
P. Radeva, J.S. Suri, IOP ebooks Stent applications, Radeva Petia, Jasjit S. Suri (Eds.), Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 1; Stent Applications, Vascular and Intravascular Imaging Trends, Analysis, and Challenges, 1, IOP Publishing, Bristol, UK, ISBN 978-0-7503-1995-9, 2019, 2019.
[126]
S.K. Banchhor, N.D. Londhe, T. Araki, L. Saba, P. Radeva, J.R. Laird, J.S. Suri, Well-balanced system for coronary calcium detection and volume measurement in a low resolution intravascular ultrasound videos, Comput. Biol. Med. 84 (2017) 168–181.
[127]
S.K. Banchhor, T. Araki, N.D. Londhe, N. Ikeda, P. Radeva, A. Elbaz, L. Saba, A. Nicolaides, S. Shafique, J.R. Laird, J.S. Suri, Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: a comparative approach, Comput. Methods Progr. Biomed. 134 (2016) 237–258.
[128]
T.S. Polonsky, R.L. McClelland, N.W. Jorgensen, D.E. Bild, G.L. Burke, A.D. Guerci, P. Greenland, Coronary artery calcium score and risk classification for coronary heart disease prediction, J. Am. Med. Assoc. 303 (2010) 1610–1616.
[129]
M.J. Pletcher, C.T. Sibley, M. Pignone, E. Vittinghoff, P. Greenland, Interpretation of the coronary artery calcium score in combination with conventional cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA), Circulation 128 (2013) 1076–1084.
[130]
N.D. Londhe, J.S. Suri, Superharmonic imaging for medical ultrasound: a review, J. Med. Syst. 40 (2016) 279.
[131]
F. Molinari, C.S. Pattichis, G. Zeng, L. Saba, U.R. Acharya, R. Sanfilippo, A. Nicolaides, J.S. Suri, Completely automated multiresolution edge snapper—a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database, IEEE Trans. Image Process. 21 (2012) 1211–1222.
[132]
F. Molinari, G. Zeng, J.S. Suri, Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 57 (2010) 1112–1124.
[133]
A. Nicolaides, M. Sabetai, S.K. Kakkos, S. Dhanjil, T. Tegos, J.M. Stevens, D.J. Thomas, S. Francis, M. Griffin, G. Geroulakos, E. Ioannidou, E. Kyriacou, The asymptomatic carotid stenosis and risk of stroke (ACSRS) study. Aims and results of quality control, Int. Angiol. : a journal of the International Union of Angiology 22 (2003) 263–272.
[134]
T. Araki, N. Ikeda, D. Shukla, N.D. Londhe, V.K. Shrivastava, S.K. Banchhor, L. Saba, A. Nicolaides, S. Shafique, J.R. Laird, A new method for IVUS-based coronary artery disease risk stratification: a link between coronary & carotid ultrasound plaque burdens, Comput. Methods Progr. Biomed. 124 (2016) 161–179.
[135]
N. Ikeda, A. Gupta, N. Dey, S. Bose, S. Shafique, T. Arak, E.C. Godia, L. Saba, J.R. Laird, A. Nicolaides, Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement, Ultrasound Med. Biol. 41 (2015) 1247–1262.
[136]
N. Ikeda, T. Araki, K. Sugi, M. Nakamura, M. Deidda, F. Molinari, K.M. Meiburger, U.R. Acharya, L. Saba, P.P. Bassareo, M. Di Martino, Y. Nagashima, G. Mercuro, M. Nakano, A. Nicolaides, J.S. Suri, Ankle-brachial index and its link to automated carotid ultrasound measurement of intima-media thickness variability in 500 Japanese coronary artery disease patients, Curr. Atherosclerosis Rep. 16 (2014) 393.
[137]
F. Molinari, W. Liboni, P. Giustetto, S. Badalamenti, J.S. Suri, Automatic computer-based tracings (ACT) in longitudinal 2-D ultrasound images using different scanners, J. Mech. Med. Biol. 9 (2009) 481–505.
[138]
H. Øygarden, Carotid intima‐media thickness and prediction of cardiovascular disease, Journal of the American Heart Association, 6 e005313.
[139]
A. Oren, L.E. Vos, C.S.P.M. Uiterwaal, D.E. Grobbee, M.L. Bots, Cardiovascular risk factors and increased carotid intima-media thickness in healthy Young adults: the atherosclerosis risk in Young adults (ARYA) study, Arch. Intern. Med. 163 (2003) 1787–1792.
[140]
M. Cooney, M.-T. Cooney, V. Maher, B. Khan, T. Leong, I. Graham, Improvement in the estimation of cardiovascular risk by carotid intima-medial thickness: a report from the Dublin Cardiohealth station study, Preventive medicine reports 2 (2015) 725–729.
[141]
H. Sillesen, P. Muntendam, A. Adourian, R. Entrekin, M. Garcia, E. Falk, V. Fuster, Carotid plaque burden as a measure of subclinical atherosclerosis: comparison with other tests for subclinical arterial disease in the High Risk Plaque BioImage study, JACC (J. Am. Coll. Cardiol.): Cardiovascular imaging 5 (2012) 681–689.
[142]
A. Jamthikar, D. Gupta, E. Cuadrado-Godia, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, C. Shankar, A. Nicolaides, V. Viswanathan, A. Sharma, J.S. Suri, Ultrasound-based Stroke/cardiovascular Risk Stratification Using Framingham Risk Score and ASCVD Risk Score Based on “Integrated Vascular Age” Instead of “Chronological Age”: a Multi-Ethnic Study of Asian Indian, Caucasian, and Japanese Cohorts, Cardiovascular Diagnosis and Therapy, 2020.
[143]
U.R. Acharya, O. Faust, A. Alvin, G. Krishnamurthi, J.C. Seabra, J. Sanches, J.S. Suri, Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization, Comput. Methods Progr. Biomed. 110 (2013) 66–75.
[144]
K.-H. Yu, A.L. Beam, I.S. Kohane, Artificial intelligence in healthcare, Nature biomedical engineering 2 (2018) 719–731.
[145]
M. Biswas, V. Kuppili, D.R. Edla, H.S. Suri, L. Saba, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm, Comput. Methods Progr. Biomed. 155 (2017) 165–177,.
[146]
L. Saba, M. Biswas, H.S. Suri, K. Viskovic, J.R. Laird, E. Cuadrado-Godia, A. Nicolaides, N.N. Khanna, V. Viswanathan, J.S. Suri, Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm, Cardiovasc. Diagn. Ther. 9 (2019) 439–461.
[147]
M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, A. Sharma, E. Cuadrado-Godia, J.R. Laird, A. Nicolaides, J.S. Suri, Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk, Med. Biol. Eng. Comput. 57 (2019) 543–564.
[148]
U.R. Acharya, M.R.K. Mookiah, S.V. Sree, D. Afonso, J. Sanches, S. Shafique, A. Nicolaides, L.M. Pedro, J.F. e Fernandes, J.S. Suri, Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment, Med. Biol. Eng. Comput. 51 (2013) 513–523.
[149]
U.R. Acharya, S.V. Sree, M.M.R. Krishnan, N. Krishnananda, S. Ranjan, P. Umesh, J.S. Suri, Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images, Comput. Methods Progr. Biomed. 112 (2013) 624–632.
[150]
U.R. Acharya, O. Faust, S.V. Sree, F. Molinari, L. Saba, A. Nicolaides, J.S. Suri, An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans, IEEE transactions on instrumentation and measurement 61 (2012) 1045–1053.
[151]
T. Araki, P.K. Jain, H.S. Suri, N.D. Londhe, N. Ikeda, A. El-Baz, V.K. Shrivastava, L. Saba, A. Nicolaides, S. Shafique, Stroke risk stratification and its validation using ultrasonic Echolucent Carotid Wall plaque morphology: A machine learning paradigm, Comput. Biol. Med. 80 (2017) 77–96.
[152]
F. Molinari, A. Mantovani, M. Deandrea, P. Limone, R. Garberoglio, J.S. Suri, Characterization of single thyroid nodules by contrast-enhanced 3-D ultrasound, Ultrasound Med. Biol. 36 (2010) 1616–1625.
[153]
U.R. Acharya, G. Swapna, S.V. Sree, F. Molinari, S. Gupta, R.H. Bardales, A. Witkowska, J.S. Suri, A review on ultrasound-based thyroid cancer tissue characterization and automated classification, Technol. Canc. Res. Treat. 13 (2014) 289–301.
[154]
U.R. Acharya, S.V. Sree, R. Ribeiro, G. Krishnamurthi, R.T. Marinho, J. Sanches, J.S. Suri, Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm, Med. Phys. 39 (2012) 4255–4264.
[155]
L. Saba, N. Dey, A.S. Ashour, S. Samanta, S.S. Nath, S. Chakraborty, J. Sanches, D. Kumar, R. Marinho, J.S. Suri, Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm, Comput. Methods Progr. Biomed. 130 (2016) 118–134.
[156]
G. Pareek, U.R. Acharya, S.V. Sree, G. Swapna, R. Yantri, R.J. Martis, L. Saba, G. Krishnamurthi, G. Mallarini, A. El-Baz, Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images, Technol. Canc. Res. Treat. 12 (2013) 545–557.
[157]
P. McClure, A. Elnakib, M.A. El-Ghar, F. Khalifa, A. Soliman, T. El-Diasty, J.S. Suri, A. Elmaghraby, A. El-Baz, In-vitro and in-vivo diagnostic techniques for prostate cancer: a review, J. Biomed. Nanotechnol. 10 (2014) 2747–2777.
[158]
U.R. Acharya, S.V. Sree, S. Kulshreshtha, F. Molinari, J.E.W. Koh, L. Saba, J.S. Suri, GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization, Technol. Canc. Res. Treat. 13 (2014) 529–539.
[159]
U.R. Acharya, L. Saba, F. Molinari, S. Guerriero, J.S. Suri, Ovarian tumor characterization and classification: a class of GyneScan™ systems, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2012, pp. 4446–4449. 2012.
[160]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind, Comput. Methods Progr. Biomed. 126 (2016) 98–109.
[161]
A. El-Baz, J.S. Suri, Lung Imaging and Computer Aided Diagnosis, CRC Press, 2011.
[162]
G.S. Tandel, A. Balestrieri, T. Jujaray, N.N. Khanna, L. Saba, J.S. Suri, Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm, Comput. Biol. Med. (2020) 103804.
[163]
M. Maniruzzaman, N. Kumar, M.M. Abedin, M.S. Islam, H.S. Suri, A.S. El-Baz, J.S. Suri, Comparative approaches for classification of diabetes mellitus data: machine learning paradigm, Comput. Methods Progr. Biomed. 152 (2017) 23–34.
[164]
A.K. Verma, V. Kuppili, S.K. Srivastava, J.S. Suri, A new backpropagation neural network classification model for prediction of incidence of malaria, Frontiers in bioscience (Landmark edition) 25 (2020) 299–334.
[165]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification, Comput. Methods Progr. Biomed. 150 (2017) 9–22.
[166]
V. Viswanathan, A.D. Jamthikar, D. Gupta, N. Shanu, A. Puvvula, N.N. Khanna, L. Saba, T. Omerzum, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, C. S, S. Joshi, H. Fiscian, A.A. Folson, D.H. Wu, Z. Ruzsa, A. Nicolaides, A. Sharma, D.L. Bhatt, J.S. Suri, Low-cost preventive screening using carotid ultrasound in patients with diabetes, Front. Biosci. 25 (2020) 1132–1171.
[167]
A. Jamthikar, D. Gupta, N.N. Khanna, L. Saba, J.R. Laird, J.S. Suri, Cardiovascular/stroke risk prevention: a new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors, Indian Heart J. 72 (4) (2020) 258–264,.
[168]
C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[169]
B.J. Erickson, P. Korfiatis, Z. Akkus, T.L. Kline, Machine Learning for Medical Imaging, 37, Radiographics : a review publication of the Radiological Society of North America, Inc, 2017, pp. 505–515.
[170]
J.S. Suri, Computer vision, pattern recognition and image processing in left ventricle segmentation: the last 50 years, Pattern Anal. Appl. 3 (2000) 209–242.
[171]
B. Ambale-Venkatesh, C.O. Wu, K. Liu, W. Hundley, R.L. McClelland, A.S. Gomes, A.R. Folsom, S. Shea, E. Guallar, D.A. Bluemke, Cardiovascular event prediction by machine learning: The Multi-Ethnic Study of Atherosclerosis, Circ. Res. 117 (2017) 311312.
[172]
T. Araki, N. Ikeda, D. Shukla, P.K. Jain, N.D. Londhe, V.K. Shrivastava, S.K. Banchhor, L. Saba, A. Nicolaides, S. Shafique, PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology, Comput. Methods Progr. Biomed. 128 (2016) 137–158.
[173]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm, Expert Syst. Appl. 42 (2015) 6184–6195.
[174]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, Exploring the color feature power for psoriasis risk stratification and classification: a data mining paradigm, Comput. Biol. Med. 65 (2015) 54–68.
[175]
L. Saba, P.K. Jain, H.S. Suri, N. Ikeda, T. Araki, B.K. Singh, A. Nicolaides, S. Shafique, A. Gupta, J.R. Laird, J.S. Suri, Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: A polling-based PCA learning paradigm, J. Med. Syst. 41 (2017) 98.
[176]
M. Maniruzzaman, M.J. Rahman, M. Al-MehediHasan, H.S. Suri, M.M. Abedin, A. El-Baz, J.S. Suri, Accurate diabetes risk stratification using machine learning: role of missing value and outliers, J. Med. Syst. 42 (2018) 92.
[177]
R. Nakanishi, D. Dey, F. Commandeur, P. Slomka, J. Betancur, H. Gransar, C. Dailing, K. Osawa, D. Berman, M. Budoff, Machine learning in predicting coronary heart disease and cardiovascular disease events: results from the multi-ethnic study of atherosclerosis (mesa), J. Am. Coll. Cardiol. 71 (2018) A1483.
[178]
R. Nakanishi, P. Slomka, J. Betancur, M.J. Blaha, K. Nasir, M.D. Miedema, J.A. Rumberger, H. Gransar, L.J. Shaw, A. Rozanski, M.J. Budoff, D.S. Berman, Abstract 15137: machine learning adds to standard clinical & CAC assessments in predicting 10-year coronary heart disease & cardiovascular disease deaths: insight from the coronary artery calcium consortium of 66,636 patients, Circulation 136 (2017) A15137–A15137.
[179]
P. Wang, Y. Li, C.K. Reddy, Machine learning for survival analysis: a survey, ACM Comput. Surv. 51 (2019) 1–36.
[180]
S. Pölsterl, N. Navab, A. Katouzian, Fast Training of Support Vector Machines for Survival Analysis, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2015, pp. 243–259.
[181]
A.C. Dimopoulos, M. Nikolaidou, F.F. Caballero, W. Engchuan, A. Sanchez-Niubo, H. Arndt, J.L. Ayuso-Mateos, J.M. Haro, S. Chatterji, E.N. Georgousopoulou, Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk, BMC Med. Res. Methodol. 18 (2018) 179.
[182]
D.B. Panagiotakos, A.P. Fitzgerald, C. Pitsavos, A. Pipilis, I. Graham, C. Stefanadis, Statistical modelling of 10-year fatal cardiovascular disease risk in Greece: The HellenicSCORE (a calibration of the ESC SCORE project), Hellenic J. Cardiol. 48 (2007) 55–63.
[183]
K. Zarkogianni, M. Athanasiou, A.C. Thanopoulou, K.S. Nikita, Comparison of machine learning approaches toward assessing the risk of developing cardiovascular disease as a long-term diabetes complication, IEEE Journal of Biomedical and Health Informatics 22 (2018) 1637–1647.
[184]
N.R. Cook, Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve, Clin. Chem. 54 (2008) 17–23.
[185]
A.C. Alba, T. Agoritsas, M. Walsh, S. Hanna, A. Iorio, P. Devereaux, T. McGinn, G. Guyatt, Discrimination and calibration of clinical prediction models: users' guides to the medical literature, Jama 318 (2017) 1377–1384.
[186]
M.J. Pencina, R.B. D'Agostino Sr, R.B. D'Agostino Jr., R.S. Vasan, Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond, Stat. Med. 27 (2008) 157–172.
[187]
R. D'Agostino, B.-H. Nam, Evaluation of the performance of survival analysis models: discrimination and calibration measures, Handb. Stat. 23 (2003) 1–25.
[188]
A. Tran-Duy, R. McDermott, J. Knight, X. Hua, E.L. Barr, K. Arabena, A. Palmer, P.M. Clarke, Development and Use of Prediction Models for Classification of Cardiovascular Risk of Remote Indigenous Australians, Heart, Lung and Circulation, 2019.
[189]
S. Lemeshow, D.W. Hosmer Jr., A review of goodness of fit statistics for use in the development of logistic regression models, Am. J. Epidemiol. 115 (1982) 92–106.
[190]
K. Rufibach, Use of Brier score to assess binary predictions, J. Clin. Epidemiol. 63 (2010) 938–939.
[191]
J. Hippisley-Cox, C. Coupland, Y. Vinogradova, J. Robson, R. Minhas, A. Sheikh, P. Brindle, Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2, BMJ 336 (2008) 1475–1482.
[192]
P.M. Burch, W.E. Glaab, D.J. Holder, J.A. Phillips, J.-M. Sauer, E.G. Walker, Net reclassification index and integrated discrimination index are not appropriate for testing whether a biomarker improves predictive performance, Toxicol. Sci. 156 (2017) 11–13.
[193]
S. Halligan, D.G. Altman, S. Mallett, Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach, Eur. Radiol. 25 (2015) 932–939.
[194]
P. Brindle, E. Jonathan, F. Lampe, M. Walker, P. Whincup, T. Fahey, S. Ebrahim, Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study, BMJ 327 (2003) 1267.
[195]
E. Zomer, A. Owen, D.J. Magliano, D. Liew, C. Reid, Validation of two Framingham cardiovascular risk prediction algorithms in an Australian population: The ‘old’versus the ‘new'Framingham equation, Eur. J. Cardiovasc. Prev. Rehabil. 18 (2011) 115–120.
[196]
A.P. DeFilippis, R. Young, C.J. Carrubba, J.W. McEvoy, M.J. Budoff, R.S. Blumenthal, R.A. Kronmal, R.L. McClelland, K. Nasir, M.J. Blaha, An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort, Ann. Intern. Med. 162 (2015) 266–275.
[197]
N.R. Cook, P.M. Ridker, Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease: An update, Ann. Intern. Med. 165 (2016) 786–794.
[198]
K. Liu, J.S. Suri, Automatic Vessel Indentification for Angiographic Screening, Google Patents, 2005.
[199]
M. Biswas, L. Saba, S. Chakrabartty, N.N. Khanna, H. Song, H.S. Suri, P.P. Sfikakis, S. Mavrogeni, K. Viskovic, J.R. Laird, E. Cuadrado-Godia, A. Nicolaides, A. Sharma, V. Viswanathan, A. Protogerou, G. Kitas, G. Pareek, M. Miner, J.S. Suri, Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment, Comput. Biol. Med. 123 (2020) 103847.
[200]
L. Saba, G. Micheletti, W. Brinjikji, P. Garofalo, R. Montisci, A. Balestrieri, J. Suri, J. DeMarco, G. Lanzino, R. Sanfilippo, Carotid intraplaque-hemorrhage volume and its association with cerebrovascular events, Am. J. Neuroradiol. 40 (2019) 1731–1737.
[201]
J. Shin, N. Tajbakhsh, R. Todd Hurst, C.B. Kendall, J. Liang, Automating carotid intima-media thickness video interpretation with convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) 2526–2535.
[202]
K. Lekadir, A. Galimzianova, À. Betriu, M. del Mar Vila, L. Igual, D.L. Rubin, E. Fernández, P. Radeva, S. Napel, A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound, IEEE journal of biomedical and health informatics 21 (2017) 48–55.
[203]
Y. Dong, Y. Pan, X. Zhao, R. Li, C. Yuan, W. Xu, Identifying carotid plaque composition in MRI with convolutional neural networks, smart computing (SMARTCOMP), IEEE International Conference on smart computing, 2017, IEEE, 2017, pp. 1–8.
[204]
P.A. Wolf, R.B. D'Agostino, A.J. Belanger, W.B. Kannel, Probability of stroke: a risk profile from the Framingham Study, Stroke 22 (1991) 312–318.
[205]
R.J. Stevens, V. Kothari, A.I. Adler, I.M. Stratton, R.R. Holman, The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56), Clin. Sci. 101 (2001) 671–679.
[206]
NIPPON DATA80 Research Group, Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population, Circ. J. 70 (2006) 1249–1255.
[207]
M. Woodward, P. Brindle, H. Tunstall-Pedoe, Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC), Heart 93 (2007) 172–176.
[208]
S. Yadlowsky, R.A. Hayward, J.B. Sussman, R.L. McClelland, Y.-I. Min, S. Basu, Clinical implications of revised pooled cohort equations for estimating atherosclerotic cardiovascular disease risk, Ann. Intern. Med. 169 (2018) 20.
[209]
X. Jia, M.M. Baig, F. Mirza, H. GholamHosseini, A cox-based risk prediction model for early detection of cardiovascular disease: identification of Key risk factors for the development of a 10-year CVD risk prediction, Advances in preventive medicine (2019) https://doi.org/10.1155/2019/8392348.
[210]
W.A. Davis, S. Colagiuri, T.M. Davis, Comparison of the Framingham and United Kingdom prospective diabetes study cardiovascular risk equations in Australian patients with type 2 diabetes from the fremantle diabetes study, Med. J. Aust. 190 (2009) 180.
[211]
H.-R. Ahn, M.-H. Shin, W.-J. Yun, H.-Y. Kim, Y.-H. Lee, S.-S. Kweon, J. Rhee, J.-S. Choi, S.-W. Choi, Comparison of the Framingham risk score, UKPDS risk engine, and SCORE for predicting carotid atherosclerosis and peripheral arterial disease in Korean type 2 diabetic patients, Korean journal of family medicine 32 (2011) 189–196.
[212]
A.D. Jamthikar, N.N. Khanna, M. Piga, L. Saba, D. Gupta, A.A. Giannopoulos, C. Carcassi, A. Nicolaides, J.R. Laird, H.S. Suri, S. Mavrogeni, G.D. Kitas, J.S. Suri, Rheumatoid arthritis: its link to atherosclerosis imaging and cardiovascular risk assessment using machine-learning-based tissue characterization, Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2, IOP Publishing 2019, pp. 4–1-4-29.
[213]
C.S. Crowson, E.L. Matteson, V.L. Roger, T.M. Therneau, S.E. Gabriel, Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis, Am. J. Cardiol. 110 (2012) 420–424.
[214]
E. Arts, C. Popa, A. Den Broeder, A. Semb, T. Toms, G. Kitas, P. Van Riel, J. Fransen, Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis, Ann. Rheum. Dis. 74 (4) (2014) 668–674,.
[215]
B. Wahlin, L. Innala, S. Magnusson, B. Möller, T. Smedby, S. Rantapää-Dahlqvist, S. Wållberg-Jonsson, Performance of the expanded cardiovascular risk prediction score for rheumatoid arthritis is not superior to the ACC/AHA Risk calculator, J. Rheumatol. 46 (2019) 130–137.
[216]
E. Arts, C. Popa, A. Den Broeder, R. Donders, A. Sandoo, T. Toms, S. Rollefstad, E. Ikdahl, A. Semb, G. Kitas, Prediction of cardiovascular risk in rheumatoid arthritis: Performance of original and adapted SCORE algorithms, Ann. Rheum. Dis. 75 (4) (2015) 674–680,.
[217]
R. Agca, S.C. Heslinga, S. Rollefstad, M. Heslinga, I.B. McInnes, M.J.L. Peters, T.K. Kvien, M. Dougados, H. Radner, F. Atzeni, J. Primdahl, A. Södergren, S. Wallberg Jonsson, J. van Rompay, C. Zabalan, T.R. Pedersen, L. Jacobsson, K. de Vlam, M.A. Gonzalez-Gay, A.G. Semb, G.D. Kitas, Y.M. Smulders, Z. Szekanecz, N. Sattar, D.P.M. Symmons, M.T. Nurmohamed, EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update, Ann. Rheum. Dis. 76 (1) (2016) 17–28,.
[218]
D. Solomon, J. Greenberg, J. Curtis, M. Liu, M. Farkouh, P. Tsao, J. Kremer, C.J. Etzel, Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: A Consortium of Rheumatology Researchers of North America Registry Study, Arthritis & rheumatology 67 (2015) 1995–2003.
[219]
C.S. Crowson, S.E. Gabriel, A.G. Semb, P.L. van Riel, G. Karpouzas, P.H. Dessein, C. Hitchon, V. Pascual-Ramos, G.D. Kitas, Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries, Rheumatology 56 (2017) 1102–1110.
[220]
A.D. Jamthikar, D. Gupta, A. Puvvula, A.M. Johri, N.N. Khanna, L. Saba, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, R. Kolluri, A.M. Sharma, V. Viswanathan, V.S. Rathore, J.S. Suri, Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging, Rheumatol. Int. (2020) 1–19.

Index Terms

  1. Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: A narrative review of integrated approaches using carotid ultrasound
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Information & Contributors

              Information

              Published In

              cover image Computers in Biology and Medicine
              Computers in Biology and Medicine  Volume 126, Issue C
              Nov 2020
              516 pages

              Publisher

              Pergamon Press, Inc.

              United States

              Publication History

              Published: 01 November 2020

              Author Tags

              1. Atherosclerosis
              2. Cardiovascular disease
              3. Stroke
              4. 10-Year risk
              5. Statistical risk calculator
              6. Integrated models
              7. Artificial intelligence-based risk assessment

              Qualifiers

              • Review-article

              Contributors

              Other Metrics

              Bibliometrics & Citations

              Bibliometrics

              Article Metrics

              • 0
                Total Citations
              • 0
                Total Downloads
              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0
              Reflects downloads up to 13 Jan 2025

              Other Metrics

              Citations

              View Options

              View options

              Media

              Figures

              Other

              Tables

              Share

              Share

              Share this Publication link

              Share on social media