Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Identification and evaluation of immunogenic MHC-I and MHC-II binding peptides from Mycobacterium tuberculosis

Published: 12 April 2024 Publication History

Abstract

Due to several limitations of the only available BCG vaccine, to generate adequate protective immune responses, it is important to develop potent and cost-effective vaccines against tuberculosis (TB). In this study, we have used an immune-informatics approach to identify potential peptide based vaccine targets against TB. The proteome of Mycobacterium tuberculosis (Mtb), the causative agent of TB, was analyzed for secretory or surface localized antigenic proteins as potential vaccine candidates. The T- and B-cell epitopes as well as MHC molecule binding efficiency were identified and mapped in the modelled structures of the selected proteins. Based on antigenicity score and molecular dynamic simulation (MD) studies two peptides namely Pep-9 and Pep-15 were analyzed, modelled and docked with MHC-I and MHC-II structures. Both peptides exhibited no cytotoxicity and were able to induce proinflammatory cytokine secretion in stimulated macrophages. The molecular docking, MD and in-vitro studies of the predicted B and T-cell epitopes of Pep-9 and Pep-15 peptides with the modelled MHC structures exhibited strong binding affinity and antigenic properties, suggesting that the complex is stable, and that these peptides can be considered as a potential candidates for the development of vaccine against TB.

Highlights

5 proteins namely ECCB1, ECCD1, ECCE1, TB 31.7 and MyCP1 were predicted as the most antigenic proteins.
Best predicted peptides were found to be present in the MtbTB31.7 (Rv2623).
Simulation studies showed significantly less residual fluctuation and more structural stability.
Predicted peptides from MtbTB31.7 were able to activate macrophages by inducing TNF-α and IL-1β synthesis.

References

[1]
K.J. Seung, S. Keshavjee, M.L. Rich, Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis, Cold Spring Harb 1;5 (9) (2015).
[2]
N.E. Nieuwenhuizen, S.H. Kaufmann, Next-generation vaccines based on bacilleCalmette–Guérin, Front. Immunol. 9 (2018) 121.
[3]
A.C. Vasconcelos-Junior, J.A. de Araújo-Filho, E.B. da Silva, E.M. de Sousa, A. Kipnis, A.P. Junqueira-Kipnis, Limitations of the BCG vaccine and new prophylaxis strategies against human tuberculosis, Einstein 7 (2009) 383–389.
[4]
A. Roy, M. Eisenhut, R.J. Harris, L.C. Rodrigues, S. Sridhar, S. Habermann, L. Snell, P. Mangtani, I. Adetifa, A. Lalvani, I. Abubakar, Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis, BMJ 349 (2014) g4643.
[5]
A. Arbues, J.I. Aguilo, J. Gonzalo-Asensio, D. Marinova, S. Uranga, E. Puentes, C. Fernandez, A. Parra, P.J. Cardona, C. Vilaplana, V. Ausina, Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials, Vaccine 31 (42) (2013) 4867–4873.
[6]
A.C. Moore, W.P. Kong, B.K. Chakrabarti, G.J. Nabel, Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice, J. Virol. 76 (1) (2002) 243–250.
[7]
T.M. Doherty, A.W. Olsen, L. van Pinxteren, P. Andersen, Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis, Infect. Immun. 70 (6) (2002) 3111–3121.
[8]
I. Delany, R. Rappuoli, E. De Gregorio, Vaccines for the 21st century, EMBO Mol. Med. 6 (6) (2014) 708–720.
[9]
W. Li, M.D. Joshi, S. Singhania, K.H. Ramsey, A.K. Murthy, Peptide vaccine: progress and challenges, Vaccines 2 (3) (2014) 515–536.
[10]
P. Roth, M. Weller, Peptide-specific vaccines, in: Translational Immunotherapy of Brain Tumors, Academic Press, 2017, pp. 213–226.
[11]
J.F. Huntley, P.G. Conley, K.E. Hagman, M.V. Norgard, Characterization of Francisellatularensis outer membrane proteins, J. Bacteriol. Res. 189 (2) (2007) 561–574.
[12]
J.S. Testa, R. Philip, Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications, Future Virol. 11 (2012) 1077–1088.
[13]
J.G. Lanier, M.J. Newman, E.M. Lee, A. Sette, R. Ahmed, Peptide vaccination using nonionic block copolymers induces protective anti-viral CTL responses, Vaccine 18 (5–6) (1999) 549–557.
[14]
S.K. Dhanda, P. Vir, D. Singla, S. Gupta, S. Kumar, G.P. Raghava, A web-based platform for designing vaccines against existing and emerging strains of Mycobacterium tuberculosis, PloS One 11 (4) (2016).
[15]
A.S. Kolaskar, P.C. Tongaonkar, A semi‐empirical method for prediction of antigenic determinants on protein antigens, FEBS Lett. 276 (1–2) (1990) 172–174.
[16]
J. Sharon, M.J. Rynkiewicz, Z. Lu, C.Y. Yang, Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics, Immunology 142 (1) (2014) 1–23.
[17]
J.M. Gershoni, A. Roitburd-Berman, D.D. Siman-Tov, N.T. Freund, Y. Weiss, Epitope mapping, BioDrugs 21 (3) (2007) 145–156.
[18]
K.C. Parker, M.A. Bednarek, J.E. Coligan, Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains, J. Immunol. 152 (1) (1994) 163–175.
[19]
R. Vita, S. Mahajan, J.A. Overton, S.K. Dhanda, S. Martini, J.R. Cantrell, D.K. Wheeler, A. Sette, B. Peters, The immune epitope database (IEDB): 2018 update, Nucleic Acids Res. 47 (D1) (2019) D339–D343.
[20]
M. Howarth, A. Williams, A.B. Tolstrup, T. Elliott, Tapasin enhances MHC class I peptide presentation according to peptide half-life, Proc. Natl. Acad. Sci. 101 (32) (2004) 11737–11742.
[21]
P. Wang, J. Sidney, C. Dow, B. Mothé, A. Sette, B. Peters, A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach, PLoS Comput. Biol. 4 (4) (2008).
[22]
Y. León, L. Zapata, A. Salas-Burgos, A. Oñate, In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigellaflexneri. Mol. Immunol. 121 (2020) 47–58.
[23]
N. Nezafat, M. Eslami, M. Negahdaripour, M.R. Rahbar, Y. Ghasemi, Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches, Mol. Biosyst. 13 (4) (2017) 699–713.
[24]
M. Hülsmeyer, K. Welfle, T. Pöhlmann, R. Misselwitz, U. Alexiev, H. Welfle, W. Saenger, B. Uchanska-Ziegler, A. Ziegler, Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide, J. Mol. Biol. 346 (5) (2005) 1367–1379.
[25]
M. Kurcinski, A. Badaczewska‐Dawid, M. Kolinski, A. Kolinski, S. Kmiecik, Flexible docking of peptides to proteins using CABS‐dock, Protein Sci. 1 (2020) 211–222.
[26]
J.E. Larsen, O. Lund, M. Nielsen, Improved method for predicting linear B-cell epitopes, Immunome Res. 1 (2006) 2.
[27]
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (2) (1983) 926–935.
[28]
M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182–7190.
[29]
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577–8593.
[30]
B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem. 12 (1997) 1463–1472.
[31]
M.J. Abraham, D. Van Der Spoel, E. Lindahl, B. Hess, The GROMACS development team GROMACS user manual version 5.0. 4, J. Mol. Model. (2014).
[32]
M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T.L. Madden, NCBI BLAST: a better web interface, Nucleic Acids Res. 36 (suppl_2) (2008) W5-9.
[33]
A. Padhi, K. Pattnaik, M. Biswas, M. Jagadeb, A. Behera, A. Sonawane, Mycobacterium tuberculosis LprE Suppresses TLR2-Dependent Cathelicidin and Autophagy Expression to Enhance Bacterial Survival in Macrophages, J. Immunol. 15203 (10) (2019 Nov) 2665–2678.
[34]
T. Richmond, Topology prediction of membrane proteins, Genome Biol. 1 (2000) reports224.
[35]
J. Sharon, M.J. Rynkiewicz, Z. Lu, C.Y. Yang, Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics, Immunology 142 (1) (2014) 1–23.
[36]
B.M. Saunders, H. Briscoe, W.J. Britton, T cell‐derived tumour necrosis factor is essential, but not sufficient, for protection against Mycobacterium tuberculosis infection, Clin. Exp. Immunol. 137 (2) (2004) 279–287.
[37]
J.E. Grotzke, D.M. Lewinsohn, Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection, Microb. Infect. 7 (4) (2005) 776–788.
[38]
I.A. Doytchinova, D.R. Flower, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines, BMC Bioinf. 8 (1) (2007) 4.
[39]
J. Kleinnijenhuis, J. Quintin, F. Preijers, L.A. Joosten, D.C. Ifrim, S. Saeed, C. Jacobs, J. van Loenhout, D. de Jong, H.G. Stunnenberg, R.J. Xavier, BacilleCalmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes, Proc. Natl. Acad. Sci. 109 (43) (2012) 17537–17542.
[40]
R.J. Arts, S.J. Moorlag, B. Novakovic, Y. Li, S.Y. Wang, M. Oosting, V. Kumar, R.J. Xavier, C. Wijmenga, L.A. Joosten, C.B. Reusken, BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity, Cell Host Microbe 23 (1) (2018) 89–100.
[41]
V.H. Priya, B. Anuradha, S.L. Gaddam, S.E. Hasnain, K.J. Murthy, V.L. Valluri, In vitro levels of interleukin 10 (IL-10) and IL-12 in response to a recombinant 32-kilodalton antigen of Mycobacterium bovis BCG after treatment for tuberculosis, Clin. Vaccine Immunol. 16 (1) (2009) 111–115.
[42]
M. Jacobs, L. Fick, N. Allie, N. Brown, B. Ryffel, Enhanced immune response in Mycobacterium bovisbacillecalmetteguerin (BCG)-infected IL-10-deficient mice, Clin. Chem. Lab. Med. 40 (9) (2002) 893–902.
[43]
W.C. Koff, D.R. Burton, P.R. Johnson, B.D. Walker, C.R. King, G.J. Nabel, R. Ahmed, M.K. Bhan, S.A. Plotkin, Accelerating next-generation vaccine development for global disease prevention, Science 340 (6136) (2013) 1232910.
[44]
O. Finco, R. Rappuoli, Designing vaccines for the twenty-first century society, Front. Immunol. 5 (2014) 12.
[45]
Y. He, R. Rappuoli, A.S. De Groot, R.T. Chen, Emerging vaccine informatics, BioMed Res. Int. (2011) 2010.
[46]
R.R. María, C.J. Arturo, J.A. Alicia, M.G. Paulina, A.O. Gerardo, The Impact of Bioinformatics on Vaccine Design and Development, InTech, Rijeka, Croatia, 2017.
[47]
P. Shah, J. Mistry, P.A. Reche, D. Gatherer, D.R. Flower, In silico design of Mycobacterium tuberculosis epitope ensemble vaccines, Mol. Immunol. 97 (2018) 56–62.
[48]
J. Mistry, D.R. Flower, Designing epitope ensemble vaccines against TB by selection:prioritizing antigens using predicted immunogenicity, Bioinformation 13 (7) (2017) 220–223.
[49]
M. Howarth, A. Williams, A.B. Tolstrup, T. Elliott, Tapasin enhances MHC class I peptide presentation according to peptide half-life, Proc. Natl. Acad. Sci. 101 (32) (2004) 11737–11742.
[50]
A.G. Pockley, B. Henderson, Extracellular cell stress (heat shock) proteins immune responses and disease: an overview, Phil. Trans. Biol. Sci. 373 (1738) (2018) 20160522.
[51]
A. Zvi, N. Ariel, J. Fulkerson, J.C. Sadoff, A. Shafferman, Whole genome identification of Mycobacterium tuberculosisvaccine candidates by comprehensive data mining and bioinformatic analyses, BMC Med. Genom. 1 (1) (2008) 18.
[52]
W.S. Kim, J.S. Kim, H.M. Kim, K.W. Kwon, S.Y. Eum, S.J. Shin, Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis, Sci. Rep. 8 (1) (2018) 1–2.
[53]
J.E. Drumm, K. Mi, P. Bilder, M. Sun, J. Lim, H. Bielefeldt-Ohmann, R. Basaraba, M. So, G. Zhu, J.M. Tufariello, A.A. Izzo, Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection, PLoS Pathog. 5 (5) (2009).
[54]
M.A. Florczyk, L.A. McCue, R.F. Stack, C.R. Hauer, K.A. McDonough, Identification and characterization of mycobacterial proteins differentially expressed understanding and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins, Infect. Immun. 69 (9) (2001) 5777–5785.
[55]
S.J. Jiang, P.I. Tsai, S.Y. Peng, C.C. Chang, Y. Chung, H.H. Tsao, H.T. Huang, S.Y. Chen, H.J. Hsu, A potential peptide derived from cytokine receptors can bind proinflammatory cytokines as a therapeutic strategy for anti-inflammation, Sci. Rep. 9 (1) (2019) 1–5.
[56]
P.D. Sousa-Vasconcelos, W.D. Seguins, E.D. Luz, Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain, Memórias do Inst. Oswaldo Cruz 110 (6) (2015) 809–813.
[57]
R.K. Giri, S.K. Selvaraj, V.K. Kalra, Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA, J. Immunol. 170 (10) (2003) 5281–5294.
[58]
X. Lin, G. Bai, L. Lin, H. Wu, J. Cai, K.E. Ugen, C. Cao, Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease, Hum. Vaccines Immunother. 10 (7) (2014) 2024–2031.
[59]
W. Li, M.D. Joshi, S. Singhania, K.H. Ramsey, A.K. Murthy, Peptide vaccine: progress and challenges, Vaccines 2 (3) (2014) 515–536.
[60]
S.K. Dhanda, S.S. Usmani, P. Agrawal, G. Nagpal, A. Gautam, G.P. Raghava, Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics, Briefings Bioinf. 18 (3) (2017) 467–478.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 130, Issue C
Mar 2021
454 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 12 April 2024

Author Tags

  1. Peptide
  2. Epitope
  3. Tuberculosis
  4. Vaccine

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media